Article
Keywords:
Kurzweil-Henstock integral; variational Henstock integral; Pettis integral
Summary:
We study the integrability of Banach space valued strongly measurable functions defined on $[0,1]$. In the case of functions $f$ given by $\sum \nolimits _{n=1}^{\infty } x_n\chi _{E_n}$, where $x_n $ are points of a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for Bochner and Pettis integrability of $f$. The function $f$ is Bochner integrable if and only if the series $\sum \nolimits _{n=1}^{\infty }x_n|E_n|$ is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of $f$. In this paper we give some conditions for variational Henstock integrability of a certain class of such functions.
References:
[1] Bongiorno, B., Piazza, L. Di, Musiał, K.:
Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions. Math. Bohem. 131 (2006), 211-223.
MR 2242846 |
Zbl 1112.26015
[2] J. Diestel, J. J. Uhl, Jr.:
Vector Measures. Mathematical Surveys 15 American Mathematical Society 13, Providence (1977).
MR 0453964 |
Zbl 0369.46039
[5] Musia{ł}, K.:
Topics in the theory of Pettis integration. School on Measure Theory and Real Analysis, Grado, 1991 Rend. Ist. Mat. Univ. Trieste 23 (1993), 177-262.
MR 1248654