[1] Janaideh, M. Al, Rakheja, S., Su, C. Y.:
An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Transactions on Mechatronics 16 (2011), 734-744 \DOI 10.1109/TMECH.2010.2052366.
DOI 10.1109/TMECH.2010.2052366
[4] Cross, R., Grinfeld, M., Lamba, H.:
Hysteresis and economics- taking the economic past into account. IEEE Control Systems 29 (2009), 30-43 \DOI 10.1109/MCS.2008.930445.
DOI 10.1109/MCS.2008.930445 |
MR 2477927
[5] Cross, R., Grinfeld, M., Lamba, H.:
A mean-field model of investor behaviour. Journal of Physics Conference Series 55 (2006), 55-62 \DOI 10.1088/1742-6596/55/1/005.
DOI 10.1088/1742-6596/55/1/005
[6] Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D.:
A new paradigm for modelling hysteresis in macroeconomic flows. Physica B: Condensed Matter. Proc. 6th Int. Symp. on Hysteresis Modeling and Micromagnetics 403 (2008), 231-236 \DOI 10.1016/j.physb.2007.08.017.
DOI 10.1016/j.physb.2007.08.017
[8] Ishlinskii, A. Yu.: Some applications of statistical methods to describing deformations of bodies. Izv. AN SSSR, Techn. Ser., 9 (1944), 583-590.
[9] Krasnosel'skij, M. A., Pokrovskij, A. V.:
Systems with Hysteresis. Transl. from the Russian. Springer, Berlin (1989).
MR 0987431 |
Zbl 0665.47038
[10] Krejčí, P.:
The Kurzweil integral and hysteresis. Journal of Physics: Conference Series 55 (2006), 144-154 \DOI 10.1088/1742-6596/55/1/014.
DOI 10.1088/1742-6596/55/1/014
[11] Krejčí, P.:
Hysteresis and periodic solutions of semilinear and quasilinear wave equations. Math. Z. 193 (1986), 247-264.
DOI 10.1007/BF01174335 |
MR 0856153
[13] Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D.:
Analytical solution for a class of network dynamics with mechanical and financial applications. Phys. Rev. E 90 (2014), 12 pages \DOI 10.1103/PhysRevE.90.032822.
DOI 10.1103/PhysRevE.90.032822
[14] Krejčí, P., Laurençot, P.:
Generalized variational inequalities. J. Convex Anal. 9 (2002), 159-183.
MR 1917394 |
Zbl 1001.49014
[15] Kuhnen, K.:
Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach. Eur. J. Control 9 (2003), 407-418.
DOI 10.3166/ejc.9.407-418 |
Zbl 1293.93213
[16] Kurzweil, J.:
Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7(82) (1957), 418-449.
MR 0111875 |
Zbl 0090.30002
[17] Prandtl, L.:
Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8 German (1928), 85-106.
DOI 10.1002/zamm.19280080202
[18] Schwabik, Š.:
On a modified sum integral of Stieltjes type. Čas. Pěstování Mat. 98 (1973), 274-277.
MR 0322114 |
Zbl 0266.26007
[19] Schwabik, Š., Tvrdý, M., Vejvoda, O.:
Differential and Integral Equations. Boundary Value Problems and Adjoints. Czechoslovak Academy of Sciences D. Reidel Publishing Company, Dordrecht (1979).
MR 0542283 |
Zbl 0417.45001
[20] Tvrdý, M.:
Regulated functions and the Perron-Stieltjes integral. Čas. Pěstování Mat. 114 (1989), 187-209.
MR 1063765