Article
Keywords:
Lorentz space; weight; normability
Summary:
We give a full characterization of normability of Lorentz spaces $\Gamma_{w}^{p}$. This result is in fact known since it can be derived from Kamińska A., Maligranda L., On Lorentz spaces, Israel J. Funct. Anal. 140 (2004), 285--318. In this paper we present an alternative and more direct proof.
References:
[1] Ariño M.A., Muckenhoupt B.:
A characterization of the dual of the classical Lorentz sequence space $d(w,q)$. Proc. Amer. Math. Soc. 112 (1991), no. 1, 87–89.
DOI 10.2307/2048483 |
MR 1031661
[4] Kamińska A., Maligranda L.:
On Lorentz spaces. Israel J. Funct. Anal. 140 (2004), 285–318.
MR 2054849
[6] Sawyer E.:
Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96 (1990), no. 2, 145–158.
MR 1052631
[7] Sinnamon G., Stepanov V.D.:
The weighted Hardy inequality: new proofs and the case $p=1$. J. London Math. Soc. (2) 54 (1996), no. 1, 89–101.
DOI 10.1112/jlms/54.1.89 |
MR 1395069
[8] Stepanov V.D.:
Integral operators on the cone of monotone functions and embeddings of Lorentz spaces. Dokl. Akad. Nauk SSSR 317 (1991), no. 6, 1308–1311.
MR 1118029