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Normability of gamma spaces

Filip Soudský

Abstract. We give a full characterization of normability of Lorentz spaces Γp

w .
This result is in fact known since it can be derived from Kamińska A., Ma-
ligranda L., On Lorentz spaces, Israel J. Funct. Anal. 140 (2004), 285–318. In
this paper we present an alternative and more direct proof.
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1. Introduction and the main result

In this paper we present a complete characterization of those parameters p
and w, where p ∈ (0, 1) and w is a nonnegative measurable function (weight), for
which the corresponding classical Lorentz space Γp

w (the precise definition is given
below) is normable. By this we mean that the functional ‖ · ‖Γp

w
is equivalent to

a norm. We in fact prove two characterizations, quite different in nature. One of
them is a certain integrability condition on the weight while the other states that
the corresponding space coincides with the space L1 + L∞. The proofs are based
on a combination of discretization and weighted norm inequalities.

This result is in fact known as it can be derived from Theorem 2.1 in [4]
characterizing isomorphic copies of lp in the space Γ. We present here a new
elementary proof which does not go beyond the scope of the classical Lorentz
spaces.

We recall that classical Lorentz spaces of type Λ were first introduced by
Lorentz in 1951 ([5]) while their modification of type Γ was developed first in
1990 by Sawyer ([6]) in connection with their crucial duality properties. These
spaces proved to be extremely useful for a wide range of applications and have
been studied ever since by many authors (e.g., [1], [3], [8], [7]). Normability of
spaces of type Λ has been characterized long time ago (see [6] and [2]).

The result is a contribution to the long-standing research of functional pro-
perties such as linearity, (quasi)-normability etc., of classical Lorentz spaces of
various types (see, e.g. [5], [1], [6], [3]).

During the whole paper, the underlying measure space (R, µ) is always non-
atomic and σ-finite with µ(R) = ∞. We shall also use the symbol M(R) for
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the set of all real-valued measurable functions defined on R. For a measurable,
real-valued function f on such a space, a non-increasing rearrangement of f is
defined by

f∗(t) := inf {s : µ ({|f | > s}) ≤ t} ,

while the maximal function of f is given by

f∗∗(t) :=
1

t

∫ t

0

f∗(s)ds.

Throughout all of this paper the expression weight will always be used for positive,
measurable function defined on (0,∞).

Definition 1. Let 0 < p < ∞ and let w be a weight. Set

Λp
w :=

{

f ∈ M(R) : ‖f‖Λp
w

:=

(
∫

∞

0

f∗(s)pw(s)ds

)
1
p

< ∞

}

and

Γp
w :=

{

f ∈ M(R) : ‖f‖Γp
v

:=

(
∫

∞

0

f∗∗(s)pw(s)ds

)
1
p

< ∞

}

.

Furthermore in the following text we shall use notation X := Γp
w. In order to

avoid the technical difficulties, we shall assume that w is locally integrable and

(1.1)

∫

∞

a

w(s)s−pds < ∞,

for all a > 0. We may also assume this without loss of generality, since if w /∈ L1
loc

or (1.1) is not satisfied, then Γp
w = {0}. In the following text function W will be

defined as

W (t) :=

∫ t

0

w(s)ds.

We recall that the space L1 + L∞ consists of all functions f ∈ M(R) for which
there exists a decomposition f = g + h such that g ∈ L1 and f ∈ L∞, and it is
equipped with the norm

‖f‖L1+L∞ :=

∫ 1

0

f∗(s)ds.

Let us also recall the definition of norm in weighted Lebesgue space on (0,∞)
which shall be also used in the proof, namely

‖f‖L
p
w

:=

(
∫

∞

0

|f(s)|pw(s)ds

)
1
p

.
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Remark 1. The equivalence of condition (ii) and (iii) in the following theorem
can be obtained from [4, Proposition 1.4], while the equivalence of (i) and (iii)
from [4, Theorem 2.1].

Theorem 1. Let 0 < p < 1 and let w be a weight. Then the following conditions

are equivalent.

(i) The space Γp
w is normable.

(ii) Both w(s) and w(s)s−p are integrable on (0,∞).
(iii) The identity

Γp
w = L1 + L∞

holds in the sense of equivalent norms.

2. Proof of Theorem 1

Lemma 1. Let X be a linear vector space. Let σ : X → [0,∞) be a positively

homogenous functional. Then the following conditions are equivalent:

(i) σ is equivalent to a norm;

(ii) there exists a constant C, independent on N , such that

σ

(

N
∑

k=1

fk

)

≤ C

N
∑

k=1

σ(fk),

for all fk ∈ X .

Proof of Lemma 1: First let us suppose that (i) holds. Denote the equivalent
norm by ̺. Then we have

σ

(

N
∑

k=1

fk

)

≤ C̺

(

N
∑

k=1

fk

)

≤ C
N
∑

k=1

̺(fk) ≤ C
N
∑

k=1

σ(fk).

Now, suppose that (2) holds. Denote

̺(f) := inf

(

N
∑

k=1

σ(fk)

)

,

where the infimum on the right-hand side is taken over all finite decompositions
of f , i.e.,

(2.1)

N
∑

k=1

fk = f.

Then obviously

̺(f) ≤ σ(f),
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for all f ∈ X . On the other hand, for all fk satisfying (2.1) we have

C

(

N
∑

k=1

σ(fk)

)

≥ σ(f).

Passing to the infimum on the left-hand side gives

C̺(f) ≥ σ(f).

Now, take f1, f2 ∈ X . Let

N1
∑

k=1

f1
k = f1,

N2
∑

k=1

f2
k = f2,

then

̺(f1 + f2) ≤

N1
∑

k=1

σ(f1
k ) +

N2
∑

k=1

σ(f2
k ).

By passing to the infimum on the right-hand side we obtain the triangle inequality
for ̺. �

Proof of Theorem 1: Let us first prove that (i) implies (ii). We shall give an
indirect proof. Suppose that (ii) is not true. Then either

(2.2)

∫

∞

0

w(s)ds = ∞

or

(2.3)

∫

∞

0

s−pw(s)ds = ∞.

First, note that if w ∈ Bp then ‖ · ‖X ≈ ‖ · ‖Λp
w
. Since the functional ‖ · ‖Λp

w
is not

normable for p < 1 (as was shown in [2]), neither is ‖ · ‖X . This allows us to focus
on the case when w /∈ Bp. Therefore we may suppose that there exists a sequence
{an}

∞

n=1 such that

(2.4) ap
n

∫

∞

an

w(s)s−pds ≥ 2nW (an).

Now let us define

(2.5) H(t) :=
tp
∫

∞

t
w(s)s−pds

W (t)
.

Since H is continuous on (0,∞) and therefore bounded on every [c, d] ⊂ (0,∞),
we may without loss of generality (by choosing appropriate sub-sequence) assume
that either an ↓ 0 or an ↑ ∞. Now, let us consider three cases:

(1) an ↑ ∞;
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(2) an ↓ 0 and (2.3) holds;
(3) an ↓ 0, (2.2) holds and supt>1 H(t) < ∞ (We can assume this otherwise

it is in fact Case 1).

Case 1. Now, if an ↑ ∞, we may again without loss of generality suppose that

(2.6)

∫

∞

an+1

w(s)s−pds ≤
1

2

∫

∞

an

w(s)s−pds.

Fix N ∈ N. Pick {fk}
N
k=1, such that

(1) supp(fk+1) ⊂ supp(fk),
(2) f∗

k (s) = qkχ(0,ak), where

qk =

(

ap

k

∫

∞

ak

w(s)s−pds

)

−
1
p

.

Then (2.6) gives

(2.7)

∫

∞

an

w(s)s−pds ≤ 2

∫ an+1

an

w(s)s−pds.

Note that

f∗∗

k (s) = qk

(

χ(0,ak) + aks−1χ(ak,∞)

)

.

Now, by (2.4) we have

(2.8)

‖fk‖X = qk

(

W (ak) + ap

k

∫

∞

ak

w(s)s−pds

)
1
p

≤ qk

(

2ap

k

∫

∞

ak

w(s)s−pds

)
1
p

= 2
1
p .

Calculate
∥

∥

∥

∥

∥

N
∑

k=1

fk

∥

∥

∥

∥

∥

X

≥

∥

∥

∥

∥

∥

N
∑

k=1

f∗∗

k χ(ak,ak+1)

∥

∥

∥

∥

∥

L
p
w

=

(

N
∑

k=1

qp

kap

k

∫ ak+1

ak

w(s)s−pds

)

1
p

≥ 2−
1
p

(

N
∑

k=1

qp

kap

k

∫

∞

ak

w(s)s−pds

)

1
p

= 2−
1
p

(

N
∑

k=1

1

)

1
p

≈ N
1
p .
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The third inequality follows from (2.7), while the next one from (2.4). Therefore
by Lemma 1 we obtain that ‖ · ‖X cannot be equivalently normed.

Case 2. Suppose (2.3) holds. If an ↓ 0, define a0 = ∞. We may without loss of
generality suppose that

(2.9)

∫

∞

an+1

w(s)s−pds ≥ 2

∫

∞

an

w(s)s−pds.

Fix N ∈ N. Now, let us pick {fk}
N

k=1 with the following properties

(1) supp(fk+1) ⊂ supp(fk),
(2) f∗

k = qkχ(0,ak), where

qk =

(

ap

k

∫

∞

ak

w(s)s−pds

)

−
1
p

.

The same calculation as in (2.8) gives

‖fk‖ ≤ 2
1
p .

Now, by (2.9), we have

(2.10)

∫ an

an+1

w(s)s−pds ≥
1

2

∫

∞

an+1

w(s)s−pds.

Calculate
∥

∥

∥

∥

∥

N
∑

k=1

fk

∥

∥

∥

∥

∥

X

≥

∥

∥

∥

∥

∥

N−1
∑

k=1

f∗∗

k+1χ(ak+1,ak)

∥

∥

∥

∥

∥

L
p
w

=

(

N−1
∑

k=1

qp

k+1a
p

k+1

∫ ak

ak+1

w(s)s−pds

)

1
p

≥ 2−
1
p

(

N−1
∑

k=1

qp

k+1a
p

k+1

∫

∞

ak+1

w(s)s−pds

)

1
p

= 2−
1
p

(

N−1
∑

k=1

1

)

1
p

≈ N
1
p ,

where the third inequality follows from (2.10). Therefore, by Lemma 1, the func-
tional is not normable.

Case 3. Now, suppose that the condition (2.2) holds. Again, if we can choose
{an}

∞

n=1 satisfying (2.4) and such that an ↑ ∞, we may use the same calculation
as in the previous one. Now if there is no such sequence, then the function H(t)
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(where H is defined in (2.5)) is bounded on [1,∞). Set

C := 1 + sup
t>1

H(t).

Fix N ∈ N. Since w is not in L1, we may choose {ak}
∞

k=1 such that

(2.11) W (ak+1) ≥ 2W (ak),

and a1 > 1. Observe that

(2.12)

∫ ak

ak−1

w(s)ds ≥
1

2
W (ak),

for k = 1, . . . , N . Find a sequence {fk}
N
k=1 such that

(1) supp(fk) ⊂ supp(fk+1),

(2) f∗

k (s) = bkχ(0,ak), where bk = W−
1
p (ak).

For technical reasons, set a0 := 0. We have

‖fk‖X = W−
1
p (ak)

(

W (ak) + ak

∫

∞

ak

w(s)s−pds

)
1
p

≤ W−
1
p (ak)

[

W (ak)(1 + sup
t>1

H(t))

]
1
p

= C
1
p .

Calculate
∥

∥

∥

∥

∥

N
∑

k=1

fk

∥

∥

∥

∥

∥

X

≥

∥

∥

∥

∥

∥

N
∑

k=1

χ(ak−1,ak)bk

∥

∥

∥

∥

∥

L
p
w

=

(

N
∑

k=1

bp

k

∫ ak+1

ak

w(s)ds

)

1
p

≥ 2−
1
p

(

N
∑

k=1

bp

kW (ak)

)

1
p

= 2−
1
p

(

N
∑

k=1

1

)

1
p

= N
1
p .

The third inequality follows from (2.12).

Now, let us prove that (ii) implies (iii). We shall prove that if (ii) is satisfied
then

(2.13) B

∫ 1

0

f∗(s)ds ≤ ‖f‖X ≤ A

∫ 1

0

f∗(s)ds,
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where

A :=

[

∫ 1

0

w(s)s−pds

(

1 +

∫

∞

1
w(s)ds

∫

∞

1 w(s)ds

)]
1
p

and

B :=

(
∫ 1

0

w(s)ds

)−
1
p

.

We have

‖f‖p
X =

∫ 1

0

f∗∗(s)pw(s)ds +

∫

∞

1

f∗∗(s)pw(s)ds =: I+II.

Let us first estimate the second term by the first one

∫

∞

1

f∗∗(s)pw(s)ds ≤ f∗∗(1)p

∫ 1

0

w(s)ds

(

∫

∞

1
w(s)ds

∫ 1

0 w(s)ds

)

≤

(

∫

∞

1
w(s)ds

∫ 1

0 w(s)ds

)

∫ 1

0

f∗∗(s)pw(s)ds.

Now estimate
∫ 1

0

f∗∗(s)pw(s)ds =

∫ 1

0

w(s)s−p

(
∫ s

0

f∗(z)dz

)p

ds

≤

∫ 1

0

w(s)s−pds

(
∫ 1

0

f∗(z)dz

)p

.

Due to this two estimates we have

‖f‖p
X ≤ Ap

(
∫ 1

0

f∗(s)ds

)p

.

On the other hand note that

(
∫ 1

0

f∗(s)ds

)p

= f∗∗(1)p =

(
∫ 1

0

w(s)ds

)−1

f∗∗(1)p

∫ 1

0

w(s)ds

≤ Bp

∫ 1

0

f∗∗(s)pw(s)ds ≤ Bp ‖f‖p

X .

Therefore the desired equivalence (2.13) holds. �
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