Previous |  Up |  Next

Article

Keywords:
linear preserver problem; semi-inner product
Summary:
Let $\mathcal {H}$ be a complex Hilbert space, $A$ a positive operator with closed range in $\mathscr {B}(\mathcal {H})$ and $\mathscr {B}_{A}(\mathcal {H})$ the sub-algebra of $\mathscr {B}(\mathcal {H})$ of all \mbox {$A$-self}-adjoint operators. Assume $\phi \colon \mathscr {B}_{A}(\mathcal {H})$ onto itself is a linear continuous map. This paper shows that if $\phi $ preserves \mbox {$A$-unitary} operators such that $\phi (I)=P$ then $\psi $ defined by $\psi (T)=P\phi (PT)$ is a homomorphism or an anti-homomorphism and $\psi (T^{\sharp })=\psi (T)^{\sharp }$ for all $T \in \mathscr {B}_{A}(\mathcal {H})$, where $P=A^{+}A$ and $A^{+}$ is the Moore-Penrose inverse of $A$. A similar result is also true if $\phi $ preserves \mbox {$A$-quasi}-unitary operators in both directions such that there exists an operator $T$ satisfying $P\phi (T)=P$.
References:
[1] Arias, M. L., Corach, G., Gonzalez, M. C.: Metric properties of projections in semi-Hilbertian spaces. Integral Equations Oper. Theory 62 (2008), 11-28. DOI 10.1007/s00020-008-1613-6 | MR 2442900 | Zbl 1181.46018
[2] Arias, M. L., Corach, G., Gonzalez, M. C.: Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 428 (2008), 1460-1475. MR 2388631 | Zbl 1140.46009
[3] Brešar, M., {Š}emrl, P.: Linear maps preserving the spectral radius. J. Funct. Anal. 142 (1996), Article No. 0153, 360-368. DOI 10.1006/jfan.1996.0153 | MR 1423038 | Zbl 0873.47002
[4] Brešar, M., {Š}emrl, P.: Mappings which preserve idempotents, local automorphisms, and local derivations. Can. J. Math. 45 (1993), 483-496. DOI 10.4153/CJM-1993-025-4 | MR 1222512 | Zbl 0796.15001
[5] Douglas, R. G.: On the operator equation {$S^{\ast} XT=X$} and related topics. Acta Sci. Math. 30 (1969), 19-32. MR 0250106
[6] Douglas, R. G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17 (1966), 413-415. DOI 10.1090/S0002-9939-1966-0203464-1 | MR 0203464 | Zbl 0146.12503
[7] Frobenius, G.: Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. Berl. Ber. 1897 German (1897), 994-1015.
[8] Herstein, I. N.: Topics in Ring Theory. Chicago Lectures in Mathematics The University of Chicago Press, Chicago (1969). MR 0271135 | Zbl 0232.16001
[9] Li, C.-K., Tsing, N.-K.: Linear preserver problems: A brief introduction and some special techniques. Linear Algebra Appl. 162-164 (1992), 217-235. MR 1148401 | Zbl 0762.15016
[10] Mbekhta, M.: Linear maps preserving the generalized spectrum. Extr. Math. 22 (2007), 45-54. MR 2368700 | Zbl 1160.47033
[11] Omladič, M., {Š}emrl, P.: Linear mappings that preserve potent operators. Proc. Am. Math. Soc. 123 (1995), 1069-1074. DOI 10.1090/S0002-9939-1995-1254849-4 | MR 1254849 | Zbl 0831.47026
[12] Palmer, T. W.: Banach Algebras and the General Theory of \mbox{$*$-algebras}, II. Encyclopedia of Mathematics and Its Applications 79 Cambridge University Press, Cambridge (2001). MR 1819503
[13] Palmer, T. W.: $\sp*$-representations of $U\sp*$-algebras. Proc. Int. Symp. on Operator Theory (Indiana Univ., Bloomington, Ind., 1970) 20 Cambridge University Press, Cambridge (2001), 929-933. MR 0410396
[14] Phadke, S. V., Khasbardar, S. K., Thakare, N. K.: On QU-operators. Indian J. Pure Appl. Math. 8 (1977), 335-343. MR 0463961 | Zbl 0367.47015
[15] Pierce, S.: General introduction: A survey of linear preserver problems. Linear and Multilinear Algebra 33 (1992), 3-5. MR 1346778
[16] Pt{á}k, V.: Banach algebras with involution. Manuscr. Math. 6 (1972), 245-290. DOI 10.1007/BF01304613 | MR 0296705 | Zbl 0304.46036
[17] Russo, B., Dye, H. A.: A note on unitary operators in {$C^{\ast} $}-algebras. Duke Math. J. 33 (1966), 413-416. DOI 10.1215/S0012-7094-66-03346-1 | MR 0193530
[18] {Š}emrl, P.: Two characterizations of automorphisms on {$B(X)$}. Stud. Math. 105 (1993), 143-149. DOI 10.4064/sm-105-2-143-149 | MR 1226624 | Zbl 0810.47001
[19] Watkins, W.: Linear maps that preserve commuting pairs of matrices. Linear Algebra Appl. 14 (1976), 29-35. DOI 10.1016/0024-3795(76)90060-4 | MR 0480574 | Zbl 0329.15005
Partner of
EuDML logo