[1] Banach, S.:
Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3 French (1922), 133-181.
DOI 10.4064/fm-3-1-133-181
[2] Chang, S.-S., Huang, N. J.:
On the generalized 2-metric spaces and probabilistic 2-metric spaces with applications to fixed point theory. Math. Jap. 34 (1989), 885-900.
MR 1025044 |
Zbl 0692.54030
[6] Choudhury, B. S., Das, K., Bhandari, S. K.:
A fixed point theorem in $2$-Menger space using a control function. Bull. Calcutta Math. Soc. 104 (2012), 21-30.
MR 3088824
[7] Choudhury, B. S., Das, K., Bhandari, S. K.:
Cyclic contraction result in $2$-Menger space. Bull. Int. Math. Virtual Inst. 2 (2012), 223-234.
MR 3159041
[8] Choudhury, B. S., Das, K., Bhandari, S. K.:
A fixed point theorem for Kannan type mappings in $2$-Menger space using a control function. Bull. Math. Anal. Appl. 3 (2011), 141-148.
MR 2955353 |
Zbl 1314.47076
[9] Choudhury, B. S., Das, K., Bhandari, S. K.:
A generalized cyclic {$C$}-contraction principle in Menger spaces using a control function. Int. J. Appl. Math. 24 (2011), 663-673.
MR 2931524
[10] Choudhury, B. S., Das, K., Bhandari, S. K.:
Fixed point theorem for mappings with cyclic contraction in Menger spaces. Int. J. Pure Appl. Sci. Technol. 4 (2011), 1-9.
MR 3001859
[15] Gole{ţ}, I.:
A fixed point theorem in probabilistic 2-metric spaces. Inst. Politehn. Traian Vuia Timişoara Lucrăr. Sem. Mat. Fiz. (1988), 21-26.
MR 1221431
[16] Had{ž}i{ć}, O.:
A fixed point theorem for multivalued mappings in $2$-Menger spaces. Zb. Rad., Prir.-Mat. Fak., Univ. Novom Sadu, Ser. Mat. 24 (1994), 1-7.
Zbl 0897.54036
[17] Hadži{ć}, O., Pap, E.:
Fixed Point Theory in Probabilistic Metric Spaces. Mathematics and Its Applications 536 Kluwer Academic Publishers, Dordrecht (2001).
MR 1896451
[19] Kada, O., Suzuki, T., Takahashi, W.:
Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jap. 44 (1996), 381-391.
MR 1416281 |
Zbl 0897.54029
[21] Kannan, R.:
Some results on fixed points. Bull. Calcutta Math. Soc. 60 (1968), Article No. 11, 71-76.
MR 0257837 |
Zbl 0209.27104
[23] Khan, M. S.:
On the convergence of sequences of fixed points in 2-metric spaces. Indian J. Pure Appl. Math. 10 (1979), 1062-1067.
MR 0547888 |
Zbl 0417.54020
[25] Kikkawa, M., Suzuki, T.:
Some similarity between contractions and Kannan mappings. {II}. Bull. Kyushu Inst. Technol., Pure Appl. Math. 55 (2008), 1-13.
MR 2455257 |
Zbl 1163.54022
[26] Kikkawa, M., Suzuki, T.:
Some similarity between contractions and Kannan mappings. Fixed Point Theory Appl. (electronic only) 2008 (2008), Article No. 649749, 8 pages.
MR 2395313 |
Zbl 1163.54022
[27] Kirk, W. A., Srinivasan, P. S., Veeramani, P.:
Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 4 (2003), 79-89.
MR 2031823 |
Zbl 1052.54032
[31] Saha, P. K., Tiwari, R.:
An alternative proof of Kannan's fixed point theorem in a generalized metric space. News Bull. Calcutta Math. Soc. 31 (2008), 15-18.
MR 2682190 |
Zbl 1218.54049
[32] Sastry, K. P. R., Babu, G. V. R.:
Some fixed point theorems by altering distances between the points. Indian J. Pure Appl. Math. 30 (1999), 641-647.
MR 1701042 |
Zbl 0938.47044
[33] Sastry, K. P. R., Naidu, S. V. R., Babu, G. V. R., Naidu, G. A.:
Generalization of common fixed point theorems for weakly commuting map by altering distances. Tamkang J. Math. 31 (2000), 243-250.
MR 1778222
[34] Schweizer, B., Sklar, A.:
Probabilistic Metric Spaces. North-Holland Series in Probability and Applied Mathematics North-Holland Publishing, New York (1983).
MR 0790314 |
Zbl 0546.60010
[39] W{ł}odarczyk, K., Plebaniak, R., Banach, A.:
Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3332-3341 erratum ibid. 71 3585-3586 (2009).
DOI 10.1016/j.na.2008.04.037 |
MR 2503079 |
Zbl 1171.54311
[40] W{ł}odarczyk, K., Plebaniak, R., Obczy{ń}ski, C.:
Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 794-805.
DOI 10.1016/j.na.2009.07.024 |
MR 2579346 |
Zbl 1185.54020
[41] Zeng, W. Z.:
Probabilistic 2-metric spaces. J. Math. Res. Exposition 7 (1987), 241-245.
MR 0929343