[1] Ballestra, L. V., Pacelli, G.:
The constant elasticity of variance model: calibration, test and evidence from the Italian equity market. Applied Financial Economics 21 (2011), 1479-1487.
DOI 10.1080/09603107.2011.579058
[4] Cox, J. C., Ross, S. A.:
The valuation of options for alternative stochastic processes. Journal of Financial Economics 3 (1976), 145-166.
DOI 10.1016/0304-405X(76)90023-4
[5] Duffie, D.:
Security Markets. Stochastic Models. Economic Theory, Econometrics, and Mathematical Economics Academic Press, Boston (1988).
MR 0955269 |
Zbl 0661.90001
[7] Emanuel, D. C., MacBeth, J. D.:
Further results on the constant elasticity of variance call option pricing model. J. Financial Quant. Anal. 17 (1982), 533-554.
DOI 10.2307/2330906
[9] Karatzas, I., Shreve, S. E.:
Methods of Mathematical Finance. Applications of Mathematics 39 Springer, Berlin (1998).
MR 1640352 |
Zbl 0941.91032
[12] Liptser, R. S., Shiryayev, A. N.:
Statistics of Random Processes. I. General Theory. Applications of Mathematics 5 Springer, New York (1977).
MR 0474486 |
Zbl 0364.60004
[13] Liptser, R. S., Shiryayev, A. N.:
Statistics of Random Processes. II. Applications. Applications of Mathematics 6 Springer, New York (1978).
MR 0488267 |
Zbl 0369.60001
[14] Ma, J., Yong, J.:
Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Mathematics 1702 Springer, Berlin (1999).
MR 1704232 |
Zbl 0927.60004
[16] Merton, R. C.:
Continuous-Time Finance. Blackwell, Cambridge (1999).
Zbl 1019.91502
[17] Øksendal, B.:
Stochastic Differential Equations. An Introduction with Applications. Universitext Springer, Berlin (1998).
Zbl 0897.60056
[18] Wu, Z., Wang, G. C.:
A Black-Scholes formula for option pricing with dividends and optimal investment problems under partial information. J. Syst. Sci. Math. Sci. 27 Chinese (2007), 676-683.
MR 2375534 |
Zbl 1150.91397