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Abstract. We consider a European option pricing problem under a partial information
market, i.e., only the security’s price can be observed, the rate of return and the noise
source in the market cannot be observed. To make the problem tractable, we focus on
gap option which is a generalized form of the classical European option. By using the
stochastic analysis and filtering technique, we derive a Black-Scholes formula for gap option
pricing with dividends under partial information. Finally, we apply filtering technique to
solve a utility maximization problem under partial information through transforming the
problem under partial information into the classical problem.
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1. Introduction

Option pricing is one of the most important problems which has been widely

studied. The Black-Scholes-Merton model [2], [15] for valuing European call and put

options on an investment asset was published in 1973. It assumes the volatility of

the asset is a constant and the price of the asset changes smoothly with no jumps.

Since neither of these conditions is satisfied for exchange rates, individual stocks

or stock indices, and no empirical evidence in financial industry shows that the

geometric Brownian motion is suitable, one major extension of the Black-Scholes

option pricing model is to overcome the drawbacks of the model. One renowned

model is the well-known constant elasticity of variance (for short, CEV) diffusion

The research was supported in part by National Natural Sciences Foundation of China
under Grants 71101099 and 71571125, and the Fundamental Research Funds for the
Central Universities under Grants 2014SCU04A06.
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model. This model was initially studied by Cox [3]. Then, Cox and Ross [4] designed

and developed it to incorporate the negative correlation between underlying asset

price change and volatility change. The CEV diffusion has been applied to exotic

options as well as standard options by many researchers. However, it is found in

Ballestra and Pacelli [1] that the CEV model does not offer a correct description

of equity prices, whereas Emanuel and Macbeth [7] state that the CEV model with

stationary parameters does not appear to be able to explain the mispricing of call

options by the Black-Scholes model. Therefore, many researchers study the option

pricing problem from other perspectives. We refer interested readers to Duffie [5],

Karatzas [8], [9] and Merton [16] for detailed reviews of the option pricing and its

extensions.

The common feature of previous studies for the option pricing problem is that

they all assume investors can observe the drift process and the Brownian motion

appearing in the stochastic differential equation for the security prices. However, it

is more realistic to assume that investors have only partial information since prices

and interest rates are published and available to the public, but drifts and paths of

Brownian motions are merely mathematical tools for model creation, but certainly

not observable. Therefore, we shall call this situation the case of partial information

to distinguish it from the case of full information.

Under partial information, the utility maximization problem was for the first time

considered by Lakner [10]. Later, Lakner [11] discussed the optimal trading strategy

problem with partial information. Recently, Wu and Wang [18] studied an option

pricing problem under partial information by using the convex analysis and the

backward stochastic differential equation techniques. To our best knowledge, there

are no studies to present a general result for European-type option pricing problem

under partial information.

To fill this research gap, we study the gap option pricing problem with dividends

under partial information, using stochastic analysis and filtering techniques. We

find that the European-type option pricing problem is tractable. By using filtering

technique, we derive a Black-Scholes formula for the gap option pricing problem

with dividends under partial information. Further, we solve a utility maximization

problem under partial information through transforming the problem under partial

information into the classical problem by using the filtering technique.

2. Model formulation

Let (Ω,F ,Ft,P) be a complete probability space, where t ∈ [0, T ]. We consider

a market which consists of one risky and one risk-free asset with price processes St
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and Bt, respectively. The price process Bt of risk-free asset satisfies

dBt = rtBt dt if Bt > 0,(1)

dBt = −RtBt dt if Bt < 0,(2)

with an initial condition B0 = b0 where b0 is a constant, rt and Rt are the lending

and borrowing interest rates at time t, respectively. The dynamics of the stock’s

price process St is determined by the stochastic differential equations

(3) dSt = µtSt dt+ σtSt dWt, S0 = s0 > 0,

where s0 is a constant, µt and σt are the expected return and the volatility rate at

time t, respectively. Since the expected return of the stock µt may not be observed

directly, we suppose that it could be described as

dµt = aµt dt+ b dWt + c dVt, µ0 = η,

where {Wt}t>0 and {Vt}t>0 are independent 1-dimensional Brownian motions on the

space (Ω,F ,Ft,P). Further, we assume that a, b and c are constants, rt, Rt, and σt
are deterministic bounded functions and σt has a bounded inverse function.

Note that µt should be driven by another Wiener process which is different from

the Wiener process W . Since µt is the expected return of the stock and St is driven

by Wt, Wiener process W should affect both µt and St. Thus, we assume that µt is

driven by both Wt and Vt.

For investors, both the stock price and the interest rate are published and available.

However, drifts and all information of white noises {Wt}t>0 and {Vt}t>0 are certainly

not observable. Thus we let

Ft := σ{Ws, Vs; 0 6 s 6 t}, Gt := σ{Su; 0 6 u 6 t},

and suppose that St is Gt-adapted and both {Wt}t>0 and {Vt}t>0 are F -adapted.
Since drifts and all information of white noises are not observable, only Gt-adapted

processes are observable. Further, the decisions of investors mainly depend on the

information of Gt. Therefore, in order to get some ideas of the nature of partial

information, we assume that only Gt-adapted processes are observable, which implies

investors cannot directly observe the drift process {µt}t>0.

We assume that Xt represents the wealth of an agent at time t and the initial

wealth X0 = x0 > 0 is a deterministic constant. Further, we define a trading

strategy πt for an agent acting in the market, i.e., the amount of money invested

in the stock at time t, where πt is a measurable, Gt-adapted process such that
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E[
∫ T

0
π2
t dt] < ∞. The negative values of both πt and Xt − πt are allowed, which

indicates that the stock can be sold out and the agent could get a loan from a bank,

respectively. We denote the dividend rate at time t by d(t, St) where dividends of

stock are assumed to be paid continuously and d(t, St) is a bounded function.

Under the above assumptions, the wealth process {Xt; t ∈ [0, T ]} is assumed to
evolve according to the dynamics

dXt = [rt(Xt − πt)
+ + (µt + d(t, St))πt −Rt(Xt − πt)

−] dt+ σtπt dWt, X0 = x0,

which is equivalent to

dXt = [rtXt +(µt + d(t, St)− rt)πt − (Rt − rt)(Xt − πt)
−] dt+ σtπt dWt, X0 = x0,

where x− = (|x| − x)/2, x+ = (|x|+ x)/2, for all x ∈ R. The explanation for the

wealth process Xt is that, for any time t, if investors buy a stock with their own

capital, i.e., πt 6 Xt, then investors can get revenue from both the stock and the

riskless asset, i.e., rt(Xt−πt)++(µt+d(t, St))πt; otherwise, investors can buy stocks

with borrowedmoney, i.e., πt > Xt, then investors should pay for the cost of borrowed

money, i.e., Rt(Xt − πt)
−, and get revenue from the stock, i.e., (µt + d(t, St))πt.

Gap option is one of the most widely used options in the real world. For a striking

price K and a predetermined price ξ which is a constant and irrelevant to K, the

investor who has a gap call option can get St − ξ when stock price is higher than K

at time T . Otherwise, there is no revenue for investors. The situation of a gap put

option is in the opposite. The value of gap option at expire time T is defined as

V (T ) =

{
(ST − ξ)I{ST >K}, call option,

(ξ − ST )I{ST 6K}, put option.

To derive the price of a gap option in the next section, the following lemma will

be employed.

Lemma 2.1. Consider a continuous system variable xt ∈ R and a continuously

observable variable Zt ∈ R which satisfy

{
dxt = F (t)xt dt+G(t) dWt + C(t) dUt,

dZt = xtZt dt+D(t)Zt dWt ∀ t ∈ [0, T ],

where F (t), G(t), C(t), D(t), D−1(t) ∈ R are bounded, {Ut}06t6T and {Wt}06t6T

are two independent 1-dimensional Brownian motions. If Ex40 < ∞, x0 and Z0 are

independent of the Wiener processes U and W , and the conditional distribution
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P (x0 6 x | Z0) is Gaussian, N(x̂0,Π0), where Zt := σ{Zu ; 0 6 u 6 t}, then the
solution of the filtering problem x̂t = E[xt|Zt] satisfies the equations





dx̂t = F (t)x̂t dt+
G(t)D(t) + Πt

D2(t)

(dZt

Zt
− x̂t dt

)
,

x̂0 = E[x0] ∀ t ∈ [0, T ],

where Πt = E[(xt − x̂t)
2|Zt] satisfies the Ricatti equation





dΠt

dt
= − Π2

t

D2(t)
+ 2

(
F (t)− G(t)

D(t)

)
Πt + C2(t),

Π0 = E[(x0 − x̂0)
2] ∀ t ∈ [0, T ].

P r o o f. The proof is analogous to that of Theorem 12.2 in [13]. So we omit it

here. �

3. Gap option pricing under partial information

To derive the price of a gap option, we first should discuss whether the contingent

claim replication is possible. For an arbitrary contingent claim ζ, we consider the

backward stochastic differential equation (for short, BSDE)

(4)

{
dXt = [rtXt + (µt + d(t, St)− rt)πt − (Rt − rt)(Xt − πt)

−] dt+ σtπt dWt,

XT = ζ,

where ζ is an arbitrary FT -measurable process such that E|ζ2| <∞. Let Zt = σtπt

and

(5) h(t,Xt, Zt) = rtXt + (µt + d(t, St)− rt)σ
−1
t Zt − (Rt − rt)(Xt − σ−1

t Zt)
−,

then

(6)

{
dXt = h(t,Xt, Zt) dt+ Zt dWt,

XT = ζ.
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Lemma 3.1. For any ζ, the BSDE (6) admits a unique adapted solution

(X(·), Z(·)).

P r o o f. By Theorem 4.1 of [14], we have that (6) admits a unique adapted

solution if there exists a constant L which satisfies the inequalities

(7)

{
|h(t,Xt, Zt)− h(t,Xt, Zt)| 6 L(|Xt −Xt|+ |Zt − Zt|),
|h(t, 0, 0)| 6 L, t ∈ [0, T ].

It follows from (5) that

|h(t,Xt, Zt)− h(t,Xt, Zt)| = |rt(Xt −Xt) + (µt + d(t, St)− rt)σ
−1
t (Zt − Zt)

− (Rt − rt)((Xt − σ−1
t Zt)

− − (Xt − σ−1
t Zt)

−)|

=
∣∣∣1
2
(Rt + rt)(Xt −Xt) +

(
µt + d(t, St)−

1

2
(Rt + rt)

)
σ−1
t (Zt − Zt)

− 1

2
(Rt − rt)(|Xt − σ−1

t Zt| − |Xt − σ−1
t Zt|)

∣∣∣

6

∣∣∣1
2
(Rt + rt)(Xt −Xt) +

(
µt + d(t, St)−

1

2
(Rt + rt)

)
σ−1
t (Zt − Zt)

∣∣∣

+
1

2
|(Rt − rt)||(Xt −Xt) + σ−1

t (Zt − Zt)|

6
1

2
(|(Rt + rt)|+ |(Rt − rt)|)|Xt −Xt|+ |σ−1

t |
(
|µt + d(t, St)

− 1

2
(Rt + rt)|+

1

2
|(Rt − rt)|

)
|Zt − Zt|

6 Rt|Xt −Xt|+ |σ−1
t |(|µt|+ d(t, St) +Rt)|Zt − Zt|

and

|h(t, 0, 0)| = 0.

Let L = max{Rt, |σ−1
t |(|µt|+d(t, St)+Rt)}. Since σ−1

t , µt and d(t, St) are bounded

and λ, ψ are constants, (7) holds. Therefore, BSDE (6) admits a unique adapted

solution (X(·), Z(·)). This completes the proof. �

Lemma 3.1 implies that BSDE(4) has a unique adapted solution (X(·), σ(·)η(·)).
As σt is a deterministic bounded function, (X(·), η(·)) also is an adapted solution.
Since the contingent claim ζ is arbitrary, the market is complete and the price of the

gap call option satisfies the BSDE

(8)

{
dXt = [rtXt + (µt + d(t, St)− rt)πt − (Rt − rt)(Xt − πt)

−] dt+ σtπt dWt,

XT = (ST − ξ)I{ST >K}.
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Since neither {Wt}t∈[0,T ] nor {Vt}t∈[0,T ] are observable, we cannot observe

{µt}t∈[0,T ] directly. However, we could employ the filtering technique to observe

{µt}t∈[0,T ] through the information of {St}t∈[0,T ]. Then we have the following result.

Theorem 3.1. Under partial information, the price process of a gap call option

{Xt ; t ∈ [0, T ]} is
Xt = ess sup{Xδ

t ; rt 6 δt 6 Rt},

where

Xδ
t = EQ

[
exp

{
−
∫ T

t

δs ds

}
(ST − ξ)I{ST >K}|Gt

]

and Q is a risk neutral probability measure which satisfies

dQ

dP
= exp

{∫ T

0

− (µ̂t + d(t, St)− δt)
2

2σ2
t

dt−
∫ T

0

µ̂t + d(t, St)− δt
σt

dW t

}

and

W t =Wt +

∫ t

0

µs − µ̂s

σs
ds.

P r o o f. Let

µ̂t = E[µt|Gt], γt = E[(µt − µ̂t)
2|Gt].

By Theorem 7.17 of [12], there exists a standard Brownian motion {W t}t∈[0,T ] on

the space (Ω,G,Gt,P) which satisfies

(9) dSt = µ̂tSt dt+ σtSt dW t.

From Lemma 2.1 we have

(10)





dµ̂t = aµ̂t dt+
bσt + γt
σ2
t

(dSt

St
− µ̂t dt

)
,

µ̂0 = E[µ0] ∀ t ∈ [0, T ],

and γt is the unique solution of the Riccati equation

(11)





dγt
dt

= 2aγt + b2 + c2 −
(
b+

γt
σt

)2
,

γ0 = E[(µ0 − µ̂0)
2] ∀ t ∈ [0, T ].

Solving (11), we have

(12) γt =
β1 − Lβ2 exp((β2 − β1)σ

−2
t t)

1− L exp((β2 − β1)σ
−2
t t)

,
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where

β1 =
(
a− b

σt

)
σ2
t − σt

√(
a− b

σt

)
σ2
t + c2,

β2 =
(
a− b

σt

)
σ2
t + σt

√(
a− b

σt

)
σ2
t + c2,

L =
γ0 − β1
γ0 − β2

.

It follows from (10) and (12) that

µ̂t = µ̂0e
at +

∫ t

0

ea(t−s)
(
b+

γs
σs

)
dW s.

By (1), (8), and (9), the price of a gap call option satisfies

{
dXt = [rtXt + (µ̂t + d(t, St)− rt)πt − (Rt − rt)(Xt − πt)

−] dt+ σtπt dW t,

XT = (ST − ξ)I{ST >K}.

Let
Yt = σtπt, θt = σ−1

t (µ̂t + d(t, St)− rt),

b(t,X, Y ) = −[rtXt + θtYt − (Rt − rt)(Xt − πt)
−].

Then we have

(13)

{
−dXt = −[rtXt + θtYt − (Rt − rt)(Xt − πt)

−] dt− Yt dW t,

XT = (ST − ξ)I{ST >K} ∀ t ∈ [0, T ].

Since (13) is a nonlinear BSDE, by using the method of variational formulation of

the price system in [6], we have

(14) b(t,Xt, Yt) = sup{bδ(t,Xt, Yt); rt 6 δt 6 Rt},

where

bδ(t,Xt, Yt) = −δtXt − θtYt −
rt − δt
σt

Yt = −δtXt − σ−1
t (µ̂t + d(t, St)− δt)Yt.

By Proposition 3.6 and the BSDE comparison theorem in [6], the solution of

BSDE (13) is

(15) Xt = ess sup{Xδ
t ; rt 6 δt 6 Rt},
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where Xδ
t satisfies the equation

(16)

{
−dXδ

t = −[δtX
δ
t + σ−1

t (µ̂t + d(t, St)− δt)Y
δ
t ] dt− Y δ

t dW t,

Xδ
T = (ST − ξ)I{ST >K} ∀ t ∈ [0, T ].

The adjoint process of (16) is

{
dΓt

s = −Γt
s[δs ds+ σ−1

s (µ̂s + d(t, Ss)− δs) dW s],

Γt
t = 1 ∀ s ∈ [t, T ].

Thus

Γt
s = exp

{∫ s

t

−δv −
(µ̂v + d(v, Sv)− δv)

2

2σ2
v

dv −
∫ s

t

µ̂v + d(v, Sv)− δv
σv

dW v

}
.

Further, we have

(17) Xδ
t = E[Γt

TX
δ
T |Gt] = E

[
exp

{∫ T

t

−δs −
(µ̂s + d(s, Ss)− δs)

2

2σ2
s

ds

−
∫ T

t

µ̂s + d(s, Ss)− δs
σs

dW s

}
(ST − ξ)I{ST>K}|Gt

]
.

Since d(t, St), δt, σt and σ
−1
t are bounded, it is easy to verify that µ̂t is a Gaussian

process and satisfies

sup
06t6T

Eµ̂t <∞, sup
06t6T

Eµ̂2
t <∞, sup

06t6T
Dµ̂t <∞.

Further, we have

E

[
exp

{∫ T

0

− (µ̂t + d(t, St)− δt)
2

2σ2
t

dt−
∫ T

0

µ̂t + d(t, St)− δt
σt

dW t

}]
= 1.

It follows from the Girsanov theorem (see, for example, Theorem 8.26 of [17]) that

dQ

dP
= exp

{∫ T

0

− (µ̂t + d(t, St)− δt)
2

2σ2
t

dt−
∫ T

0

µ̂t + d(t, St)− δt
σt

dW t

}
,

where Q is a risk neutral probability measure, and

(18) Ŵt =W t +

∫ t

0

µ̂s + d(t, Ss)− δs
σs

ds
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is a standard Brownian motion under the probability measure Q. From (9) and (16),

we have

dSt = (δt − d(t, St))St dt+ σtSt dŴt,

which is equivalent to

ST = St exp
{[
δt − d(t, St)−

1

2
σ2
t

]
(T − t) + σt(ŴT − Ŵt)

}
,

and then {
−dXδ

t = −[δtX
δ
t ] dt− Y δ

t dŴt,

Xδ
T = (ST − ξ)I{ST>K}.

The adjoint process of the above BSDE is

{
dΓt

s = −Γt
sδs ds,

Γt
t = 1 ∀ s ∈ [t, T ].

This gives

Γt
s = exp

{∫ s

t

−δv dv
}
.

Then we have

(19) Xδ
t = EQ[Γ

t
TX

δ
T |Gt] = EQ

[
exp

{
−
∫ T

t

δs ds

}
(ST − ξ)I{ST >K}|Gt

]
.

This completes the proof. �

Corollary 3.1. When all parameters are constants, the price of a gap call option

with dividends under partial information is

Xt = e−d(T−t)StN(dR1 (St))− ξe−R(T−t)N(dR0 (St)),

where d(t, St) = d, δt = δ, σt = σ are constants and

dδ0(St) =
1

σ
√
T − t

ln
( St

Ke−(δ−d)(T−t)

)
− 1

2
σ
√
T − t,

dδ1(St) = dδ0(St) + σ
√
T − t,

{ST > K} =

{
−ŴT − Ŵt√

T − t
< dδ0(St)

}
,

N(x) =
1√
2π

∫ x

−∞
e−z2/2 dz.
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P r o o f. From (19), we have

Xδ
t = EQ

[
exp

{
−
∫ T

t

δ ds

}
(ST − ξ)I{ST >K}|Gt

]

= EQ[exp{−δ(T − t)}(ST − ξ)I{ST >K}|Gt]

= EQ[e
−δ(T−t)ST I{ST>K}|Gt]− ξe−δ(T−t)EQ[I{ST >K}]

= −ξe−δ(T−t)
Q(I{ST>K}) + e−d(T−t)StEQ[e

σ(ŴT −Ŵt)−1/2σ2(T−t)I{ST>K}]

= −ξe−δ(T−t)N(dδ0(St))

+e−d(T−t)St

∫ ∞

−∞
e−σ

√
T−tx−1/2σ2(T−t)I{x<dβ

0
(St)}

1√
2π

e−x2/2 dx

= −ξe−δ(T−t)N(dδ0(St)) + e−d(T−t)St

∫ ∞

−∞

1√
2π

e−1/2(x+σ
√
T−t)2I{x<dβ

0
(St)} dx

= −ξe−δ(T−t)N(dδ0(St)) + e−d(T−t)St

∫ ∞

−∞

1√
2π

e−1/2y2

I{y<dβ
1
(St)} dy

= −ξe−δ(T−t)N(dδ0(St)) + e−d(T−t)St

∫ dβ
1
(St)

−∞

1√
2π

e−1/2y2

dy

= e−d(T−t)StN(dδ1(St)) − ξe−δ(T−t)N(dδ0(St))

and

(20)
∂Xδ

t

∂δ
= ξ(T − t)e−(δ−α)(T−t)N(dδ0(St)) > 0,

which implies that Xδ
t increases with respect to δ. By (15) and (20), the option price

at time t is

(21) Xt = e−d(T−t)StN(dR1 (St))− ξe−R(T−t)N(dR0 (St)).

This completes the proof. �

If d = 0 and Rt = rt = r, then (21) reduces to the classical gap call option pricing

formula, i.e.,

Xt = StN(d1(St))− ξe−r(T−t)N(d0(St)),

where

d0(St) =
1

σ
√
T − t

{
ln
St

K
+
(
r − 1

2
σ2

)
(T − t)

}
,

d1(St) = d0(St) + σ
√
T − t.

In the same way, we can get the gap put option pricing formula under partial infor-

mation either.
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4. Optimal trading strategy under partial information

In this section, we consider the optimal trading strategy under partial information.

Let x0 be the initial wealth at time 0 of an agent. The investor wants to select

a portfolio in order to maximize the expected utility on the finite time interval [0, T ].

Definition 4.1. A trading strategy π = {π(t) = (π1(t), . . . , πN (t)) ; 0 6 t 6 T }
is an N -dimensional, measurable, G-adapted process such that

E

∫ T

0

π2
t dt <∞,

where G is the augmented filtration generated by the price process St.

Definition 4.2. A trading strategy π is called admissible if Xx0,π
t > 0, a.s.

t ∈ [0, T ].

Definition 4.3. A function U : [0,∞) → R ∪ {−∞} is called a utility func-
tion if it is continuous, strictly increasing, strictly concave on its domain, continu-

ously differentiable on [0,∞) with derivative function U ′(·) satisfying the relation
lim
x→∞

U ′(x) = 0.

Our optimization problem is to maximize the expected utility from the terminal

wealth, i.e.,

(22) max
{πt}06t6T

E[U(Xx0,π
T )]

over all admissible trading strategies. To find an optimal solution for the above prob-

lem, we can use both the information of the stock price and the optimal estimation

of µt which was obtained by using the filtering technique.

From the preceding section, we have

(23)





dXx0,π
t = [rtX

x0,π
t + (µ̂t + d(t, St)− rt)πt

−(Rt − rt)(X
x0,π
t − πt)

−] dt+ σtπt dW t,

dSt = µ̂tSt dt+ σtSt dW t,

dµ̂t = aµ̂t dt+
bσt + γt
σt

dW t ∀ t ∈ [0, T ],

where {W t}t∈[0,T ] and {µ̂t}t∈[0,T ] are observable.

In an uncertain market, besides the expected profit, investors focus more on risk

or potential loss. In view of this, we consider the Constant Relative Risk Aversion

(CRRA) utility function which is defined as

U(x) =





1

ν
xν if ν < 0,

lnx if ν = 0.
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First, we consider the case of ν < 0, then the utility function is

(24) U(x) =
1

ν
xν .

By using the Itô formula, we have

(25) E
(1
ν
(Xx0,π

T )
ν
)
=

1

ν
xν +

1

2
E

∫ T

0

(ν − 1)(Xx0,π
t )

ν−2
σ2
t π

2
t dt

+ E

∫ T

0

(Xx0,π
t )

ν−1
[rtX

x0,π
t + (µ̂t + d(t, St)− rt)πt

− (Rt − rt)(X
x0,π
t − πt)

−] dt

=
1

ν
xν + E

∫ T

0

(Xx0,π
t )

ν
rt dt

− E

∫ T

0

1

(Xx0,π
t )

2−ν

[
Xx0,π

t [(rt − µ̂t − d(t, St))πt

+ (Rt − rt)(X
x0,π
t − πt)

−] +
1

2
(1− ν)σ2

t π
2
t

]
dt.

Theorem 4.1. Under partial information, the optimal trading strategy for (22)

and (24) is

πt =
Xx0,π

t

σ2
t (ν − 1)

[
(rt − µt − d(t, St)) + (Rt − rt)

1− sgn(Xx0,π
t − πt)

2

]
,

where sgn(·) is the sign function.

P r o o f. In order to maximize the expected utility from the terminal wealth, we

should maximize (25), i.e., minimize the following term:

M(πt) := Xx0,π
t [(rt − µ̂t − d(t, St))πt + (Rt − rt)(X

x0,π
t − πt)

−] +
1

2
(1− ν)σ2

t π
2
t .

Let dM(πt)/dπt = 0. Then we have

Xx0,π
t

[
(rt − µ̂t − d(t, St)) + (Rt − rt)

1− sgn(Xx0,π
t − πt)

2

]
+ (1− ν)σ2

t πt = 0,

which implies

πt =
Xx0,π

t

σ2
t (ν − 1)

[
(rt − µ̂t − d(t, St)) + (Rt − rt)

1− sgn(Xx0,π
t − πt)

2

]
.

This completes the proof. �
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Corollary 4.1. If both the borrowing and lending interest rates are identical,

then the optimal trading strategy under partial information is

πt =
Xx0,π

t

σ2
t (ν − 1)

(rt − µ̂t − d(t, St)).

Next, we consider the case of ν = 0. In this case, the utility function is also called

the logarithmic utility function, i.e.,

(26) U(x) = lnx.

By using the Itô formula, we have

E(ln(Xx0,π
T )) = lnx0 + E

∫ T

0

rt dt− E

∫ T

0

1

(Xx0,π
t )

2

[
Xx0,π

t [(rt − µ̂t − d(t, St))πt

+ (Rt − rt)(X
x0,π
t − πt)

−] +
1

2
σ2
t π

2
t

]
dt.

Corollary 4.2. Under partial information, the optimal trading strategy for (22)

and (26) is

πt =
Xx0,π

t

σ2
t

[
(µ̂t + d(t, St)− rt)− (Rt − rt)

1− sgn(Xx0,π
t − πt)

2

]
,

where sgn(·) is the sign function. If both the borrowing and lending interest rates
are identical, then the optimal trading strategy under partial information is

πt =
Xx0,π

t

σ2
t

(µ̂t + d(t, St)− rt).

P r o o f. The proof is analogous to that of Theorem 4.1. So we omit it here. �

For both utility functions, the optimal trading strategies heavily depend on the

filtered estimation of µt, i.e., µ̂t. Therefore, in the sequel, we compare the difference

of the optimal expected utility between full information and partial information. To

make the problem easy to analyze, we assume that all parameters are constant and

both the borrowing and lending interest rates are identical, i.e., rt = Rt = r, σt = σ,

and d(t, St) = 0. The terminal wealth under full information is given as

dX̃x0,π
t = [rX̃x0,π

t + (µt − r)πt] dt+ σπt dWt,
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and the optimal trading strategy is

πt =
X̃x0,π

t

σ2
(µt − r).

Therefore, the optimal terminal wealth under full information is

dX̃x0

t =
[
r +

(µt − r)2

σ2

]
X̃x0

t dt+
µt − r

σ
X̃x0

t dWt.

Similarly, the optimal terminal wealth under partial information is

dXx0

t =
[
r +

(µ̂t − r)2

σ2

]
Xx0

t dt+
µ̂t − r

σ
Xx0

t dW t.

Under the logarithmic utility function, the difference of the optimal expected util-

ity between full information and partial information is

(27) |E ln(X̃x0

T )− E ln(Xx0

T )| = 1

2σ2

∣∣∣∣E
∫ T

0

(µs − r)2 ds− E

∫ T

0

(µ̂s − r)2 ds

∣∣∣∣.

For µt, the unique solution of SDE (3) is

(28) µt = ηeat +

∫ t

0

bea(t−s) dWs +

∫ t

0

cea(t−s) dVs.

It is easy to verify that µt is Gaussian on the space (Ω,F ,Ft,P). Then we have

Eµt = µ̂0e
at and

Eµ2
t = (γ0 + µ̂2

0)e
2at +

∫ t

0

(b2 + c2)e2a(t−s) ds,

where µ̂0 = E(µ0) = E(η) and γ0 = E[(µ0 − µ̂0)
2] = E[(µ0 − E(µ0)

2].

For µ̂t, it follows from (9) and (10) that

dµ̂t = aµ̂t dt+
bσ + γt
σ

dW t,

which implies that

(29) µ̂t = µ̂0e
at +

∫ t

0

(
b+

γs
σ

)
ea(t−s) dW s.

Then, from (11) and (18), we have

(30) µ̂t = µ̂0e
∫

t

0
a−σ−1(b+γs/σ) ds +

∫ t

0

r

σ

(
b+

γs
σ

)
e
∫

t

s
a−σ−1(b+γv/σ) dv ds

+

∫ t

0

(
b+

γs
σ

)
e
∫

t

s
a−σ−1(b+γv/σ) dv dŴs,
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where

γt =
β1 − β2Le

(β2−β1)t/σ
2

1− Le(β2−β1)t/σ2
, β1 = σ(aσ − b−

√
aσ2 − bσ + c2),

β2 = σ(aσ − b+
√
aσ2 − bσ + c2),

L =
γ0 − β1
γ0 − β2

and W t =Wt +

∫ t

0

µs − µ̂s

σ
ds = Ŵt −

∫ t

0

µ̂s − r

σ
ds.

By (28) and (30), the difference of the optimal expected utility between full infor-

mation and partial information (27) can be further written as

|E ln(X̃x0

T )− E ln(Xx0

T )| = 1

8a2σ2

∣∣∣∣(b2 + c2 + 2aγ0)(e
2aT − 1)− 2a(b2 + c2)T

− 4a2
∫ T

0

∫ s

0

(
b+

γs
σ

)2

e2a(s−v) dv ds

∣∣∣∣.

Obviously, the difference is decreasing with respect to both σ and γ0.

5. Conclusions

This paper addresses a gap option pricing problem with dividends under partial

information. Since investors could not observe complete information in financial

markets, it is more realistic to consider how to price financial derivatives under

partial information. By using the filtering technique, a Black-Scholes formula for

pricing a gap option is derived. Although we only focus on the gap option, this

method could be applied to other European-type options. In the last part of this

paper, we solve a utility maximization problem of an investor who wants to maximize

the expected utility from the terminal value of his portfolio on the finite time interval

[0, T ] under partial information. By using the filtering technique, the problem under

partial information can be transformed into the classical problem.

Future studies can go one step further by adapting the proposed method to the

valuation of American-type options. Moreover, it would be more interesting to gen-

eralize the model to discuss the portfolio selection problem under partial information.
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