[3] Cieślak, T., Stinner, C.:
Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J. Differ. Equations 252 (2012), 5832-5851.
DOI 10.1016/j.jde.2012.01.045 |
MR 2902137 |
Zbl 1252.35087
[4] Herrero, M. A., Velázquez, J. J. L.:
A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4. 24 (1997), 633-683.
MR 1627338 |
Zbl 0904.35037
[8] Nagai, T., Senba, T., Yoshida, K.:
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj. Ser. Int. 40 (1997), 411-433.
MR 1610709 |
Zbl 0901.35104
[9] Osaki, K., Yagi, A.:
Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj. Ser. Int. 44 (2001), 441-469.
MR 1893940 |
Zbl 1145.37337
[10] Painter, K. J., Hillen, T.:
Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10 (2002), 501-543.
MR 2052525 |
Zbl 1057.92013
[11] Tao, Y., Winkler, M.:
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equations 252 (2012), 692-715.
DOI 10.1016/j.jde.2011.08.019 |
MR 2852223