Previous |  Up |  Next

Article

Keywords:
boundedness; chemotaxis; nonlinear logistic source
Summary:
We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of Cao (2014).
References:
[1] Cao, X.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source. J. Math. Anal. Appl. 412 (2014), 181-188. DOI 10.1016/j.jmaa.2013.10.061 | MR 3145792
[2] Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Appl. Math. 129 (2014), 135-146. DOI 10.1007/s10440-013-9832-5 | MR 3152080 | Zbl 1295.35123
[3] Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J. Differ. Equations 252 (2012), 5832-5851. DOI 10.1016/j.jde.2012.01.045 | MR 2902137 | Zbl 1252.35087
[4] Herrero, M. A., Velázquez, J. J. L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4. 24 (1997), 633-683. MR 1627338 | Zbl 0904.35037
[5] Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12 (2001), 159-177. DOI 10.1017/S0956792501004363 | MR 1931303 | Zbl 1017.92006
[6] Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equations 215 (2005), 52-107. DOI 10.1016/j.jde.2004.10.022 | MR 2146345 | Zbl 1085.35065
[7] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415. DOI 10.1016/0022-5193(70)90092-5 | Zbl 1170.92306
[8] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj. Ser. Int. 40 (1997), 411-433. MR 1610709 | Zbl 0901.35104
[9] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj. Ser. Int. 44 (2001), 441-469. MR 1893940 | Zbl 1145.37337
[10] Painter, K. J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10 (2002), 501-543. MR 2052525 | Zbl 1057.92013
[11] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equations 252 (2012), 692-715. DOI 10.1016/j.jde.2011.08.019 | MR 2852223
[12] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100 (2013), 748-767. DOI 10.1016/j.matpur.2013.01.020 | MR 3115832 | Zbl 1326.35053
[13] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equations 248 (2010), 2889-2905. DOI 10.1016/j.jde.2010.02.008 | MR 2644137 | Zbl 1190.92004
[14] Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equations 35 (2010), 1516-1537. DOI 10.1080/03605300903473426 | MR 2754053 | Zbl 1290.35139
Partner of
EuDML logo