[3] Euh, Y., Park, J. H., Sekigawa, K.:
A generalization of a 4-dimensional Einstein manifold. Math. Slovaca 63 (2013), 595-610.
MR 3071978
[5] Gilkey, P. B.:
The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds. ICP Advanced Texts in Mathematics 2 Imperial College, London (2007).
MR 2351705 |
Zbl 1128.53041
[8] Sekigawa, K., Vanhecke, L.:
Volume-preserving geodesic symmetries on four-dimensional Kähler manifolds. Differential Geometry, Proc. Second Int. Symp., Peñí scola, Spain, 1985 Lecture Notes in Math. 1209 Springer, Berlin (1986), 275-291 A. M. Naveira et al.
DOI 10.1007/BFb0076638 |
MR 0863763 |
Zbl 0605.53031
[9] Singer, I. M., Thorpe, J. A.:
The curvature of 4-dimensional Einstein spaces. Global Analysis, Papers in Honor of K. Kodaira Univ. Tokyo Press, Tokyo (1969), 355-365.
MR 0256303 |
Zbl 0199.25401