[2] Bergh, P. A., Jasso, G., Thaule, M.:
Higher \mbox{$n$-angulations} from local rings. (to appear) in J. Lond. Math. Soc. arXiv:1311.2089v2[math.CT] (2013).
MR 3073923
[4] Geiss, C., Keller, B., Oppermann, S.:
{$n$}-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120.
MR 3021448 |
Zbl 1271.18013
[5] Happel, D.:
Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Note Series 119 Cambridge University Press, Cambridge (1988).
MR 0935124 |
Zbl 0635.16017
[7] Jasso, G.:
\mbox{$n$-abelian} and \mbox{$n$-exact} categories. arXiv:1405.7805v2[math.CT] (2014).
MR 3519980
[8] J{ørgensen, P.:
Torsion classes and $t$-structures in higher homological algebra. Int. Math. Res. Not. (2015), doi:10.1093/imrn/rnv265.
DOI 10.1093/imrn/rnv265 |
MR 3544623
[9] Puppe, D.:
On the formal structure of stable homotopy theory. Colloquium on Algebraic Topology Lectures Matematisk Institut, Aarhus Universitet, Aarhus (1962), 65-71.
Zbl 0139.41106
[10] Verdier, J.-L.:
Catégories dérivées. Quelques résultats (État O). Semin. Geom. Algebr. Bois-Marie, SGA 4 1/2, Lect. Notes Math. 569 Springer, New York French (1977).
Zbl 0407.18008