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Abstract. Geiss, Keller and Oppermann (2013) introduced the notion of n-angulated cat-
egory, which is a “higher dimensional” analogue of triangulated category, and showed that
certain (n—2)-cluster tilting subcategories of triangulated categories give rise to n-angulated
categories. We define mutation pairs in n-angulated categories and prove that given such
a mutation pair, the corresponding quotient category carries a natural n-angulated struc-
ture. This result generalizes a theorem of Iyama-Yoshino (2008) for triangulated categories.
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1. INTRODUCTION

Triangulated categories were introduced by Grothendieck, Verdier [10] and
Puppe [9] independently to axiomatize the properties of derived categories and
stable homotopy categories, respectively. Triangulated categories are very impor-
tant both in geometry and algebra.

Geiss, Keller and Oppermann [4] introduced the notion of n-angulated category,
which is a “higher dimensional” analogue of triangulated category, and showed that
certain (n — 2)-cluster tilting subcategories of triangulated categories give rise to
n-angulated categories. For n = 3, n-angulated categories are nothing but triangu-
lated categories. Nowadays the theory of n-angulated categories has been developed
further. Bergh and Thaule discussed the axioms for n-angulated categories [3]. They
introduced a higher “octahedral axiom” and showed that it is equivalent to the map-
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ping cone axiom. Other examples of n-angulated categories from local rings were
given in [2]. The notion of Grothendieck group of an n-angulated category was intro-
duced to give a higher analogue of Thomason’s classification theorem for triangulated
subcategories (see [1]). Recently, Jasso introduced n-abelian and n-exact categories,
and showed that the quotient category of a Frobenius n-exact category has a natural
structure of an (n + 2)-angulated category ([7], Theorem 5.11), which is a higher
analogue of a result of Happel ([5], Theorem 2.6).

The aim of this paper is to discuss a construction of n-angulated categories. We
define mutation pairs in n-angulated categories and prove that given such a mutation
pair, the corresponding quotient category carries a natural m-angulated structure.
For n = 3, our main result recovers a result of Iyama-Yoshino ([6], Theorem 4.2).

The paper is organized as follows. In Section 2, we recall the definition of an
n-angulated category and give some useful facts. In Section 3, we define mutation
pairs in n-angulated categories, then state and prove our main results. In Section 4,

we give an example to illustrate our main result.

2. n-ANGULATED CATEGORIES

In this section we recall some basics on n-angulated categories from [3] and [4].

Let C be an additive category equipped with an automorphism ¥: C—C,and n
an integer greater than or equal to three. An n-3-sequence in C is a sequence of
morphisms

X, f1 X, f2 X; f3 fn-1 X, fn 0X,.

Its left rotation is the n-X-sequence

f2 f3 fa frn—1 fn (=1)"3f1

Xs X3 Xy Xn — Y X3 ¥ Xo.
We can define right rotation of an n-X-sequence similarly. A morphism of n-X-
sequences is a sequence of morphisms ¢ = (@1, @2, ..., ¥y,) such that the diagram

X, f1 X, f2 Xs f3 o frn—1 X, fn X,
l«pl l«m ‘L% l«ﬂn l&pl
Yl g1 Y,Q g2 Y}, 93 L 9n—1 Yn 9n EYi
commutes where each row is an n-Y-sequence. It is an isomorphism if v1, @2, ..., ¢p

are all isomorphisms in C.

Definition 2.1 ([4]). An n-angulated category is a triple (C, %, ©), where C is
an additive category, 3 is an automorphism of C, and © is a class of n-YX-sequences
(whose elements are called n-angles), which satisfies the following axioms:
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(N1) (a) The class O is closed under direct sums and direct summands.
(b) For each object X € C the trivial sequence

1x

X X 0 0 »X

belongs to ©.
(c¢) For each morphism f;: X;—Xo in C, there exists an n-angle whose first
morphism is fj.
(N2) An n-Y-sequence belongs to O if and only if its left rotation belongs to O.
(N3) Each commutative diagram

p PRELNE R LI . NN a5 S
I I
l/(,@l llP2 | ¥3 | ¥n lZQC’l
g1 92 v 93 gn—1 M In
Y1 Y2 Y3 . Y i) 1

with rows in © can be completed to a morphism of n-¥-sequences.
(N4) In the situation of (N3), the morphisms @3, ¢4, .. ., ¢, can be chosen such that
the mapping cone

(—h 0) (—h 0) (—ﬁ, 0 ) (—zh o)
P2 g1 P3 g2 $n gn—1 3p1 gn

XQ@YléXg@YQ ZXl@Yn%ZXQ@Zyl

belongs to ©.

We recall a higher “octahedral axiom” (N4’) for an n-angulated category as follows,
which was introduced by Bergh and Thaule [3].
(N4’) Given a commutative diagram

X, f1 X, f2 X5 f3 o fn—2 X, fn-1 X, fn X,
| e H
X1 g1 Y,Q g2 Y3 g3 . gn—2 Ynfl gn—1 Yn 9n EXl

-
Z3

-
lhﬂ_l
Zn,

hn
¥ X5
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whose top rows and second column are n-angles. Then there exist morphisms
[Vor Xz%Y; (Z = 3,4,...,71), wj: Yj—>Zj (] = 3,4,...,’11) and gﬁki Xk—>Zk,1
(k=4,5,...,n) with the following two properties:

(a) The sequence (1x,,p2,®3,...,¢n) is a morphism of n-angles.
(b) The n-Y-sequence

—fa O —fs 0 0
<f3 ) pa —gs —¢5 —ga 0
©3 ba Y3 ¢5  a hs

(21) Xs————— X403 ——— = X500 — = X O Y5 © Zy

—fe 0 0 —fn-1 0 0
06 —9s }? (—1);’1%_1 —wgn_2} 0
b6 Y5 ha o n—1 n—2 hn_3 X, &Y 1@ 2
((—2"% o0 )
n-1 hn- U hoe S fahn
1 2 Y, & Z, 1 ( 1) Z. f2 $Xs

is an m-angle, and h,, - ¥, = Lf1 - gn.

Theorem 2.2 ([3], Theorem 4.4). If © is a class of n-YX-sequences satisfying the
axioms (N1), (N2) and (N3), then © satisfies (N4) if and only if © satisfies (N4').

To conclude this section, we give three useful facts on n-angulated categories.

Lemma 2.3 ([4], Remarks 2.2 (¢)). If (C,%,©) is an n-angulated category, then
the opposite category (C°P, X!, ®) is also an n-angulated category, where

-, n— n—
Eian( ) f X, f1 X, f2 frn—2 X, fn—1 X,

is an n-angle in ® provided that

X, f1 X, f2 X5 f3 fn-1 X, fn X,

is an n-angle in ©.

Lemma 2.4. Let

X, f1 X, f2 X5 f3 fn-1 X, fn X,

be an n-angle in an n-angulated category C. Then

956



(1) the induced sequence
e O X)) e O K)o (DK

is exact;

(2) the induced sequence
o ﬁC(EAXla _) ﬁC(AX’M _) — ﬁC(X% _) ﬁC(‘le _) —

is exact.

Proof. (1) We refer to [4], Proposition 2.5 (a).
(2) Follows from (1) and Lemma 2.3. O

The following lemma is due to [3], Lemma 4.1.

Lemma 2.5. Let (C,%,0) be an n-angulated category. Then each commutative

diagram
. - Fr—s fn— n
D R T A ) ¢
| I I
lgm | p2 | ¥3 | Pn—1 H lzwl
V Y n— \V n— n
Yl g1 Y,Q 92 Y3 g3 . 9n—2 Yn—l gn—1 Xn g9 ZYl

with rows in © can be completed to a morphism of n-Y-sequences such that

() ) ()
X —2 e ——2 Xy ey, ——2
( fn_2 0 )
(=1)"¢pn-2 gn-3 ()" o, 1,gn—2) (=)™ fngn-1

Xn—l @Yn—Q Yn—l EXI

is an n-angle.
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3. MAIN RESULTS

Let C be an additive category and D a subcategory of C. When we say that D is

a subcategory of C, we always mean that D is full and closed under isomorphisms,

direct sums and direct summands. A morphism f: X—Y in C is called D-monic if
C(f,D)

C

C(Y,D) (X,D) 0 is exact for any object D € D. A morphism f: X—D
in C is called a left D-approximation of X if f is D-monic and D € D. We can define
D-epic morphism and right D-approximation dually.

Definition 3.1. Let C be an n-angulated category, and let D and Z are subcat-
egories of C with D C Z. The pair (Z, Z) is called a D-mutation pair if it satisfies:
(1) For any object X € Z, there exists an n-angle

(11 (12 (13 dn—z dn—l n
X Dy Dy Dy g ——Y ——=3%X

where D; € D, Y € Z, dy is a left D-approximation and d,,—; is a right
D-approximation.

(2) For any object Y € Z, there exists an n-angle

di da ds dn—2 dn—1 .
X D, D, Dy 9g——Y ——=3%X

where X € Z, D; € D, d; is a left D-approximation and d,,_; is a right
D-approximation.

Note that if C is a triangulated category, i.e., when n = 3, our definition of
a mutation pair is weaker than Iyama-Yoshino’s definition ([6], Definition 2.5), since
we do not required D to be a rigid subcategory.

For a D-mutation pair (£, Z) in an n-angulated category C, consider the quotient
category Z/[D] whose objects are objects of Z and given two objects X, Y, the set
of morphisms (Z/[D])(X,Y) is defined as the quotient group Z(X,Y)/[D](X,Y),
where [D](X,Y) is the subgroup of morphisms from X to Y factoring through some
object in D. For any morphism f: X—Y in Z, we denote by f the image of f
under the quotient functor Z—Z2/[D].

Lemma 3.2. Let

X, f1 X, f2 X f3 o fn—2 X, frn-1 X, fn 0X,
lal laz l% lan—l lan lEal
(11 d2 (13 dn—2 dn—l dn
X D, Dy Dy,—2 Y XX,
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and

X, f1 X, f2 X f3 o frn—2 X, frn—1 X, fn 0X,

lal l l |- l lz
d d d: dn— dn— dn

X —">D) —=Dy—"> .. 2D, sy uX

be morphisms of n-angles, where X,Y, X; € Z and D; € D. Then a, = % in the
quotient category Z/[D].

0. By
O

Proof. Since dpa, = Xay - fn, = dpal,, we have d,(a, — a,,

3~

Lemma 2.4 (1) we obtain that a,, — a], factors through d,,_1, thus a, = a

Now we construct a functor T': Z/[D]—Z/[D] as follows. For any object X € Z,
fix an n-angle

d d d Ay —3 dn—1 dn
X—>D —2>D,—2-... %D, TX nX

with D; € D, TX € Z, d; is a left D-approximation and d,_; is a right
D-approximation. For any morphism f € Z(X,X’), since d; is a left D-approxi-
mation, there exist morphisms a; and g which make the following diagram commu-

tative:
d d d dp—: dn— dn
X 2D 2Dy 2 LDy e T nX
lf lal laz la"z lg l/z:f
a  Yooay Y ay dy_o ) dn d,,
X' Dy Dy D;,_o TX' X'

Now we put T'f = g. Note that ¥f - d,, = dy, - g, which will be used frequently.

Proposition 3.3. The functor T: Z/[D|—Z/[D] is a well defined equivalence.

Proof. By Lemma 3.2, it is easy to see that T is a well defined functor. We
can construct another functor 77: Z/[D]—Z/[D] in a dual manner. For any object
X € Z, fix an n-angle

dn— dn—1 .
rx-2-p -—2.p,-=.... ip , X s srix

with D; € D, T'X € Z, d; being a left D-approximation and d,,_; a right D-approxi-
mation. For any morphism f € Z(X, X’), since d,_, is a right D-approximation,
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there exist morphisms b; and g which make the following diagram commutative:

dp—c dn—1 n
77X —2>D —2>D, 2. 2D, X —2- 57X
lg lbn—2 lbn—:s lbl lf lzg
d’ d} d; dy, . dy,_y d,
. d 1 ‘D/1 2 D’2 3o ... 2 D;’L—Q bl L T X

We put 7’f = g. The dual of Lemma 3.2 implies that 7" is a well defined functor.
It is easy to check that T" gives a quasi-inverse of T'. O

Definition 3.4. Let

x,lex, oy, Lo Uy vy,

be an n-angle, where X; € Z and f; is D-monic. Then there exists a commutative
diagram of n-angles

(3.1) X, f1 X, f2 X, f3 fn—2 X, fn-1 X, fn X,

laz lag lanl l/an H
d: d dn—2 dn—1 d

X, e p B p, B Do 2L X, — % vx,.

The n-T-sequence

fr f2 fs s an
X, X, X3 =X, TX:

is called a standard n-angle in Z/[D]. We define ® to be the class of n-T-sequences
which are isomorphic to standard n-angles.

Lemma 3.5. Assume that we have a commutative diagram

fl f2 f3 fnfl fn

X1 X2 X3 te Xn E‘le
l@l l@2 lWS ltpn l&m
Y1 g1 Y2 92 Y3 g3 . In—1 Yn gn EYl

where the rows are n-angles in C, all X;,Y; € Z and f1, g1 are D-monic. Then we
have the commutative diagram

f1 f2 f3 fn-1 an
Xi—Xg——Xg——> - X, —TX,
N
g1 g2 g3 gn—1 bn
Y —=Yo ——=Y; — Y, —TM

where the rows are standard n-angles in Z /[D].
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Proof. We only need to show that T'¢; - an = by - ¢n. By the constructions of
the morphism T'¢; and the standard n-angles in Z/[D], we have two commutative
diagrams of n-angles

X, f1 X, f2 X; f3 o frn—2 X, fn—1 X, fn e
NN
dp— dp— n
x,-t.p =op, B 2 p L, rx, vk,
o s s N N
a d, dl dy_ dy dy,
Vi —>Df —> D) —> - D, ——>TV, oYy,
and
X, f1 X, f2 X, f3 o frn—2 X, frn—1 X, fn 0X,
lgm lwz ltps l‘ﬁn—l ltpn lzwl
Yl g1 Y2 g2 Y3 g3 L gn—2 Yn—l gn—1 Yn 9n EYl
s |
& s d & & €,
Y1 —=> D —> Dy —>... —=>D,_, =TV, —> 3V,
where T'p1 = t1. Lemma 3.2 implies that T'p1 - ay = by + @n- (I

Definition 3.6. Let C be an n-angulated category. A subcategory Z is called
extension-closed if for each morphism f,,: X,—YXX; with X1, X,, € Z, there exists
an n-angle

X, f1 X, f2 Xs f3 fn-1 X, fn $X,

with each X; € Z.

It is easy to see that the definition of an extension-closed subcategory in an
n-angulated category is the same as the classical definition in a triangulated cat-
egory for n = 3. By definition, each n-angulated subcategory is extension-closed for
any n > 3. We can compare the definition of an extension-closed subcategory with
the definition of a left extension-closed subcategory given by Jgrgensen [8].

Now we can state and prove our main theorem.
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Theorem 3.7. Let C be an n-angulated category, and let D and Z are subcate-
gories of C with D C Z. If (Z,2) is a D-mutation pair and Z is extension-closed,
then the quotient category Z/[D] is an n-angulated category with respect to the
autoequivalence T' and n-angles defined in Definition 3.4.

Proof. We will check that the class of n-T-sequences ®, which is defined in
Definition 3.4, satisfies the axioms (N1), (N2), (N3) and (N4’). It is easy to see from
the definition that (N1) (a) is satisfied.

For any object X € Z, the identity morphism of X is D-monic. The commutative

diagram
X x o —2s. % g% .o—"oyx
P b
di ds ds dn—2 dn—1 dn
X D1 Dy e Dy_s TX X
shows that
X —>x 0 0 TX
belongs to ®. Thus (N1) (b) is satisfied.
For each morphism f: X—Y in Z, let
d d d: dn— dn— dn
X Dy —>Dy—> .. 5Dy s TX X

be the n-angle given by the mutation pair. Since the subcategory Z is extension-
closed and Y, TX € Z, there exists an n-angle

fi I f: frn— frn— Sf-dn
Y Yo —2s Yy —s Y, T Y

with each Y; € Z. By Lemma 2.5, the commutative diagram

d d d: di— din— dn
X—>D 2D, 2. 2D, o, TX nX
| | |
lf P | s | Pn1 H lEf
Y \ Y
f . s fo: Foe S dy
y v sy B My, Sy Ny

can be completed to a morphism of n-Y-sequences. Moreover,
() (% 1) (5.7)
f w2 f1 —3 f2
_—

X———D1 Y ————Dy 8 Y,
( dn_2 0 )
(=) "¢n_2 fns (=)™ on_1,frn2) (=1)"dy fr—1

e DYL—Q @ Yn—2 Yn_l ZX
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is an n-angle, which induces an n-angle in Z/[D]

f f1 f2 fn—3 fn—2 an
Y —Yo—— - Yo 2 Yo 1 ——TX

X

since the morphism (_}11) is D-monic. Thus (N1) (c) is satisfied.
(N2) We only consider the case of standard n-angles, since the general case can
be easily deduced. Let

" 2 fs fus .
X1 Xo X3 X, TX,

be a standard n-angle induced by the commutative diagram (3.1). We need to show
that its left rotation belongs to ®.
Consider the following three n-angles in C:

()=, f1 f2 f3 fn-3 fn—2 frn-1
Z_an X1 Xo X3 v Xn—2 Xp_1 — )(n7
d d: d d dn— dn— dn
X; —= Dy —> Dy ——> D3 —= -+ ——= D,y > TX; X1,
0 1p 0 0 0 0 Ixn
nlX, Dy —2~ D, 0 0 X, —" X,

where the first exists by (N2). Since di - 71 f,, = azf1 - X1 f, = 0, we use (N4') to
get an n-angle in C

f
Xzﬁ){g@l%

()
¢3 Y

((EI)WdO ) (% dn—1)
n—1 n—: oy — Yfi-dn
2 X, B Dy — )y i X,

(—f4 0) (7fn72 0 )
P4 ds ¢n—2 dn_3

X4@D2

Xn—l @ Dn—3

with ¢’ = f,—1 and d,, - ¢’ = (—=1)"f,. Note that f, = d,a,, hence we have
dn(¢" = (=1)"a,) = 0. Thus ¢’ — (=1)"a, factors through d, 1, so that ¢’ =
(—1)"a,. We claim that the morphism (f:) : Xo—X3® D; is D-monic. In fact,
for any morphism f: Xo—D with D € D, there is a morphism ¢g: D;—D such
that ff1 = gdi = gpfi since dy is a left D-approximation. Now (f — gp)fi = 0,
hence there exists a morphism h: X3—D with f — gp = hfa. So f = (h g)(fj
Let

’ ’ ’
dy dy_s dy_q

dl
Dy, TX; ——= XX,
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be the n-angle given by the mutation pair. Assume that T'f1 = g1, then we get
d;, - g1 = Xf1-d, by the definition of Tf;. Thus we can obtain the following

commutative diagram:

©) &)
b3 P Pn-1 dn—2 W' dn_1) Sf1-dn
Q%Xg@D Xn@ang TXl ZXQ
I I
H " s l H
4 v d dy,_s \ dy,_y d,
D, . D, TX, 2 Xo.

It follows that

fo p fa —fn—2 (=1)" frn-1 (=D)™an Tf1

X, X; X, . X1 X, TX, TX,

is an n-angle in Z/[D]. The commutative diagram

—fs fa —fn—2 (=D"fn-1 (=1)"an ThH
Xy Xn—1 Xn TX: TXo
R
f3 fa Jn—2 Jn—1 an (=D)"T f1
X4 anl Xn TX1 TXQ
shows that
f2 f3 fa fn—2 frn—1 an (=)™ T f1
Xo X3 Xy Xn-1 Xn TX, TX,

belongs to ®.
Conversely, let

f2 fs fa frna In Th
X X3 Xy e X, TX, TX,

be a standard n-angle in Z/[D]. In a similar way, we can show that its right rotation
is also an n-angle.

(N3) We only consider the case of standard n-angles. Suppose that there is a com-
mutative diagram

f1 f2 f3 Sfrn—1 an
(32) X1 — XQ — X3 — e Xn — TXl
-, | -
g1 g2 g3 gn—1 2%
Y — Yo —— Y3 —> - Y, —1TV"
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with rows standard n-angles in Z/[D]. Since po- f1 = g1-¢1 holds, @2 f1 —g1¢1 factors
through some object D in D. Assume that psf1 — g1pp1 = gf, where f: X;—D
and g: D—Y5. Since f; is D-monic, there exists h: Xo—D such that f = hf;.
Note that (w2 — gh)fi1 = g11, hence by (N3) we have the commutative diagram

fl f2 f3 fnfl er

X1 X X3 e X, —=3¥X;
I |
l@l ltngh | ¥3 | Pn lEcpl
g1 g2 ¥ g3 gn—1 ¥ 9n
Y1 Y, Y3 e Y, XY,

with rows n-angles in C. By Lemma 3.5, the diagram (3.2) can be completed to
a morphism of n-angles.

(N4') We only consider the case of standard n-angles. Let

i f2 fs fr-1 an

X1 XQ X3 Xn TX17
P21 92 93 gn—1 bn

X1 Yo —Ys—— - ——Y, ——TX,,
Y2 hg h3 hn—l Cn

X Yo — s —— - — 7, ——TX»

be three standard n-angles in Z/[D] which are induced by the following three n-angles
in C, respectively:

X, f1 X, f2 X; f3 o fn-1 X, fn $X,,
X, w2 f1 Y, g2 Ys 9s _ gn— Y, gn $X,
he he hp hn
X2V, 22y 2 s 7 X,

where f; and @9 are D-monic, thus s f1 is D-monic too. Then we have f, = dpan,
gn = dpb, and h, = d c, by the definition of standard n-angles in Z/[D], where
dp: TX1—3X; and d,: TXo—3X5.

By the axiom (N4’), there exist morphisms ¢;: X;—Y; (i = 3,4,...,n),
Vi1 Y;—2Z; (j = 3,4,...,n) and ¢p: Xp—Z,_1 (kK = 4,5,...,n) satisfying
(N4’) (a) and (N4') (b). We need to show that in the quotient category Z/[D] the
corresponding (N4') (a) and (N4’) (b) are satisfied.

By Lemma 3.5, (N4') (a) holds. For (N4’) (b), we first note that the morphism
(f;): X3—X,®Y3 is D-monic. In fact, for any morphism f: X3—D with
D € D, there exists a morphism ¢: Yo—D with ffo = gps since o is D-monic.
Now gwaofi = ffofi1 = 0, which implies that there exists a morphism h: Ys—D
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with ¢ = hgs. Note that p3fo = gowe, thus (f — hes)fa = 0. Then there exists
a morphism i: Xy—D with f — hgs = ifs. Hence f = (i h)(i; ) Therefore
the n-angle (2.1) induces an n-angle in Z/[D] with the last morphism e,, satisfying
dl e, =3fy hy, where d!: TX3—>XX3.

To complete the proof, it suffices to check that e, =T f2- ¢, and cytn = T f1 - bp.
Let T'fy = iy, then by definition we have X fy-d;, = dj;iz. Now disc, = Xfo-d;,c,, =
Yfo - hy = dley, which implies that e, — iac, factors through some object in D,
thus e, = iscy, = T fo - ¢,. Similarly, let T'f; = i1, then ¥f; - d, = d,i;. Note that
dh ety = hpthp = Xf1 - gn = f1 - dnby = di1by,. Thus ¢, 1), — i1b, factors through
some object in D and ¢, Yn =T f1 - bn. O

Remark 3.8. In Theorem 3.7, if n = 3 and D is a rigid subcategory of C, then
we recover a theorem of Iyama-Yoshino [6], Theorem 4.2.

4. EXAMPLE

We first recall the standard construction of n-angulated categories given by Geiss-
Keller-Oppermann [4], Theorem 1. Let 7 be a triangulated category and C an
(n — 2)-cluster tilting subcategory which is closed under 3”2, where X is the shift
functor of 7. Then (C,X"~2,0) is an n-angulated category, where © is the class of
all sequences

X, f1 X, f2 X; fs Jn—1 X, fn w2y,

such that there exists a diagram

f2

nxe

1

N
X~ X

X3 Xn-1 ;
n—1
5 | X35 - Xpas<~—F+—X,

2

with X; € C for all 7 € 7, such that all the oriented triangles are triangles in 7, all
the non-oriented triangles commute, and f, is the composition along the lower edge
of the diagram.

Example 4.1. Let 7 = D’(kQ)/77[1] be the cluster category of type As,

where () is the quiver 1—a>2—ﬁ>3, D®(kQ) is the bounded derived category of fi-
nite generated modules over kQ, 7 is the AR-translation and [1] is the shift functor
of D(kQ). Then T is a triangulated category. Its shift functor is also denoted by [1].
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The AR-quiver of T is:

/\/\/\
/\/\/\/\

Let C = add(S3® P ® S1). It is easy to check that C is a 2-cluster tilting subcategory
of T. Moreover, C[2] = C. Thus (C, [2]) is a 4-angulated category. In fact, C = proj A,
where A = End¢(S3 @ P1 @ S1)°P is a self-injective cluster tilted algebra. Let D =
add(S3 @ S1). Then the 4-angle

Py S1 S3 Py Pi[2]

shows that (C,C) is a D-mutation pair. By Theorem 3.7, the quotient category C/[D]
is a 4-angulated category.

Acknowledgement. The author thanks the anonymous referee for his/her help-
ful comments and useful suggestions improving this paper, especially on some ex-
pressions and Definition 3.6, which were inaccurate in the original version.
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