[Bu1] Buchberger B.:
Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen polynomideal. Ph.D. Thesis, University of Innsbruck, 1965.
Zbl 1245.13020
[Bu2] Buchberger B.:
Gröbner bases: An algorithmic method in polynomial ideal theory. in Multidimensional Systems Theory (Bose, N.K., ed.), Reidel Dordrecht, 1985, pp. 184–232.
Zbl 0587.13009
[Eis] Eisenbud D.:
Commutative Algebra with a View Toward to Algebraic Geometry. Graduate Texts in Mathematics, 150, Springer, New York, 1995.
MR 1322960
[Fau] Faugére J.-C.:
A new efficient algorithm for computing Gröobner bases without reduction to zero $(F5)$. in Proceedings ISSAC'02, ACM Press, New York, 2002, pp. 75–82.
MR 2035234
[Gal] Galligo A.:
Some algorithmic questions on ideals of differential operators. Proc. EUROCAL'85, Lecture Notes in Comput. Sci., 204, Springer, Berlin, 1985, pp. 413–421.
MR 0826576 |
Zbl 0634.16001
[Hu] Humphreys J.E.:
Introduction to Lie Algebras and Representation Theory. Springer, New York-Berlin, 1972.
MR 0323842 |
Zbl 0447.17002
[Kr2] Kredel H.:
Solvable Polynomial Rings. Shaker-Verlag, 1993.
Zbl 0790.16027
[KR2] Kreuzer M., Robbiano L.:
Computational Commutative Algebra $2$. Springer, Berlin, 2005.
MR 2159476
[Lev] Levandovskyy V.: Non-commutative computer algebra for polynomial algebra: Gröbner bases, applications and implementation. Ph.D. Thesis, TU Kaiserslautern, 2005.
[Li1] Li H.:
Noncommutative Gröbner Bases and Filtered-Graded Transfer. Lecture Note in Mathematics, 1795, Springer, Berlin, 2002.
DOI 10.1007/b84211 |
MR 1947291
[Li2] Li H.:
Gröbner Bases in Ring Theory. World Scientific Publishing Co., Hackensack, NJ, 2012.
MR 2894019
[Li4] Li H.:
A note on solvable polynomial algebras. Comput. Sci. J. Moldova 22 (2014), no. 1, 99–109; arXiv:1212.5988 [math.RA].
MR 3243257
[LS] Li H., Su C.: On (de)homogenized Gröbner bases. Journal of Algebra, Number Theory: Advances and Applications 3 (2010), no. 1, 35–70.
[LVO] Li H., Van Oystaeyen F.:
Zariskian Filtrations. $K$-Monograph in Mathematics, 2, Kluwer Academic Publishers, Dordrecht, 1996.
MR 1420862
[Sch] Schreyer F.O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrasschen Divisionsatz. Diplomarbeit, Hamburg, 1980.
[SWMZ] Sun Y. et al.:
A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras. in Proc. ISSAC'12, ACM Press, New York, 2012, pp. 351–358.
MR 3206324 |
Zbl 1308.68193