Previous |  Up |  Next

Article

Keywords:
hyperbolic space; linear Weingarten hypersurfaces; totally umbilical hypersurfaces; hyperbolic cylinders
Summary:
In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space $\mathbb{H}^{n+1}$, that is, complete hypersurfaces of $\mathbb{H}^{n+1}$ whose mean curvature $H$ and normalized scalar curvature $R$ satisfy $R=aH+b$ for some $a$, $b\in \mathbb{R}$. In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of $\mathbb{H}^{n+1}$. Furthermore, a rigidity result concerning the compact case is also given.
References:
[1] Abe, N., Koike, N., Yamaguchi, S.: Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form. Yokohama Math. J. 35 (1987), 123–126. MR 0928379 | Zbl 0645.53010
[2] Alencar, H., do Carmo, M.: Hypersurfaces with constant mean curvature in spheres. Proc. Amer. Math. Soc. 120 (1994), 1223–1229. DOI 10.1090/S0002-9939-1994-1172943-2 | MR 1172943 | Zbl 0802.53017
[3] Aquino, C.P., de Lima, H.F.: On the geometry of linear Weingarten hypersurfaces in the hyperbolic space. Monatsh. Math. 171 (2013), 259–268. DOI 10.1007/s00605-013-0476-3 | MR 3090789 | Zbl 1279.53055
[4] Caminha, A.: The geometry of closed conformal vector fields on Riemannian spaces. Bull. Braz. Math. Soc. 42 (2011), 277–300. DOI 10.1007/s00574-011-0015-6 | MR 2833803 | Zbl 1242.53068
[5] Cartan, É.: Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann. Mat. Pura Appl. 17 (1938), 177–191. DOI 10.1007/BF02410700 | MR 1553310 | Zbl 0020.06505
[6] Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. DOI 10.1007/BF01425237 | MR 0431043 | Zbl 0349.53041
[7] Li, H.: Hypersurfaces with constant scalar curvature in space forms. Math. Ann. 305 (1996), 665–672. DOI 10.1007/BF01444243 | MR 1399710 | Zbl 0864.53040
[8] Li, H.: Global rigidity theorems of hypersurfaces. Ark. Mat. 35 (1997), 327–351. DOI 10.1007/BF02559973 | MR 1478784 | Zbl 0920.53028
[9] Li, H., Suh, Y.J., Wei, G.: Linear Weingarten hypersurfaces in a unit sphere. Bull. Korean Math. Soc. 46 (2009), 321–329. DOI 10.4134/BKMS.2009.46.2.321 | MR 2502796 | Zbl 1165.53361
[10] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Amer. J. Math. 96 (1974), 207–213. DOI 10.2307/2373587 | MR 0353216 | Zbl 0302.53028
[11] Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan 19 (1967), 205–214. DOI 10.2969/jmsj/01920205 | MR 0215259 | Zbl 0154.21501
[12] Ryan, P.J.: Hypersurfaces with parallel Ricci tensor. Osaka J. Math. 8 (1971), 251–259. MR 0296859 | Zbl 0222.53025
[13] Shu, S.: Complete hypersurfaces with constant scalar curvature in a hyperbolic space. Balkan J. Geom. Appl. 12 (2007), 107–115. MR 2321535 | Zbl 1135.53039
[14] Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (1975), 201–228. DOI 10.1002/cpa.3160280203 | MR 0431040
[15] Yau, S.T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J. 25 (1976), 659–670. DOI 10.1512/iumj.1976.25.25051 | MR 0417452
Partner of
EuDML logo