Previous |  Up |  Next

Article

Keywords:
Higgs bundle; flat connection; representation space; deformation retraction
Summary:
Let $G$ be a connected reductive affine algebraic group defined over the complex numbers, and $K\,\subset\, G$ be a maximal compact subgroup. Let $X$, $Y$ be irreducible smooth complex projective varieties and $f\colon X\to Y$ an algebraic morphism, such that $\pi_1(Y)$ is virtually nilpotent and the homomorphism $f_*\colon \pi_1(X)\to\pi_1(Y)$ is surjective. Define \begin{align*} {\mathcal R }^f\big(\pi_1(X), G\big)&= \{\rho \in \operatorname{Hom}\big(\pi_1(X), G\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,,\\[6pt] {\mathcal R }^f\big(\pi_1(X), K\big)&= \{\rho \in \operatorname{Hom}\big(\pi_1(X), K\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,, \end{align*} where $A\colon G\to \operatorname{GL}(\operatorname{Lie}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient ${\mathcal R }^f(\pi_1(X, x_0),\, G)/\!\!/G$ admits a deformation retraction to ${\mathcal R }^f(\pi_1(X, x_0),\, K)/K$. We also show that the space of conjugacy classes of $n$ almost commuting elements in $G$ admits a deformation retraction to the space of conjugacy classes of $n$ almost commuting elements in $K$.
References:
[1] Anchouche, B., Biswas, I.: Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold. Amer. J. Math. 123 (2001), 207–228. DOI 10.1353/ajm.2001.0007 | MR 1828221 | Zbl 1007.53026
[2] Biswas, I., Bruzzo, U.: On semistable principal bundles over a complex projective manifold. II. Geom. Dedicata 146 (2010), 27–41. DOI 10.1007/s10711-009-9424-8 | MR 2644269 | Zbl 1196.14043
[3] Biswas, I., Florentino, C.: Character varieties of virtually nilpotent Kähler groups and $G$–Higgs bundles. Ann. Inst. Fourier (Grenoble), to appear, arXiv:1405.0610.
[4] Biswas, I., Florentino, C.: Commuting elements in reductive groups and Higgs bundles on Abelian varieties. J. Algebra 388 (2013), 194–202. DOI 10.1016/j.jalgebra.2013.05.006 | MR 3061684 | Zbl 1285.14045
[5] Biswas, I., Gómez, T.L.: Connections and Higgs fields on a principal bundle. Ann. Global Anal. Geom. 33 (2008), 19–46. DOI 10.1007/s10455-007-9072-x | MR 2369185 | Zbl 1185.14032
[6] Borel, A., Friedman, R., Morgan, J.W.: Almost commuting elements in compact Lie groups. Mem. Amer. Math. Soc. 157 (2002), no. 747. MR 1895253 | Zbl 0993.22002
[7] Florentino, C., Lawton, S.: Topology of character varieties of Abelian groups. preprint arXiv:1301.7616. MR 3227204 | Zbl 1300.14045
[8] Kac, V.G., Smilga, A.V.: Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. preprint arXiv hep-th/9902029, 1999. MR 1885976 | Zbl 1035.81061
[9] Katzarkov, L., Pantev, T.: Representations of fundamental groups whose Higgs bundles are pullbacks. J. Differential Geom. 39 (1994), 103–121. MR 1258916 | Zbl 0810.14010
[10] Pettet, A., Souto, J.: Commuting tuples in reductive groups and their maximal compact subgroups. Geom. Topol. 17 (2013), 2513–2593. DOI 10.2140/gt.2013.17.2513 | MR 3190294 | Zbl 1306.55007
[11] Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. DOI 10.1007/BF02699491 | MR 1179076 | Zbl 0814.32003
Partner of
EuDML logo