[4] Berkovits, J., Drábek, P., Leinfelder, H., Mustonen, V., Tajčová, G.:
Time-periodic oscillations in suspension bridges: existence of unique solutions. Nonlinear Anal., Real World Appl. 1 (2000), 345-362.
MR 1791531 |
Zbl 0989.74031
[9] Edwards, R. E.:
Functional Analysis. Theory and Applications. Holt Rinehart and Winston New York (1965).
MR 0221256 |
Zbl 0182.16101
[11] Gajewski, H., Gröger, K., Zacharias, K.:
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. German Mathematische Lehrbücher und Monographien. II. Abteilung. Band 38 Akademie-Verlag, Berlin (1974).
MR 0636412
[14] Lazer, A. C., McKenna, P. J.:
Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32 (1990), 537-578.
DOI 10.1137/1032120 |
MR 1084570 |
Zbl 0725.73057
[17] Malík, J.:
Sudden lateral asymmetry and torsional oscillations in the original Tacoma suspension bridge. J. Sound Vib. 332 (2013), 3772-3789.
DOI 10.1016/j.jsv.2013.02.011
[20] Plaut, R. H.:
Snap loads and torsional oscillations of the original Tacoma Narrows Bridge. J. Sound Vib. 309 (2008), 613-636.
DOI 10.1016/j.jsv.2007.07.057
[21] Plaut, R. H., Davis, F. M.:
Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges. J. Sound Vib. 307 (2007), 894-905.
DOI 10.1016/j.jsv.2007.07.036
[22] Pugsley, A.: The Theory of Suspension Bridges. Edward Arnold, London (1968).
[25] Simiu, E., Scanlan, R. H.: Wind Effects on Structures: Fundamentals and Applications to Design. Wiley, New York (1996).
[27] Zeidler, E.:
Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators. Springer, New York (1990).
MR 1033497 |
Zbl 0684.47028