[1] Aida, S., Kusuoka, S., Stroock, D.:
On the support of Wiener functionals. Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics. Proc. Conf., Sanda and Kyoto, Japan, 1990 K. D. Elworthy et al. Pitman Res. Notes Math. Ser. 284 Longman Scientific & Technical, Harlow, Essex; John Wiley & Sons, New York (1993), 3-34.
MR 1354161 |
Zbl 0790.60047
[3] Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A.:
A convergent finite-element-based discretization of the stochastic Landau-{L}ifshitz-{G}ilbert equation. IMA J. Numer. Anal. 34 (2014), 502-549.
DOI 10.1093/imanum/drt020 |
MR 3194798 |
Zbl 1298.65012
[4] Baňas, Ľ., Brzeźniak, Z., Neklyudov, M., Prohl, A.:
Stochastic Ferromagnetism. Analysis and Numerics. De Gruyter Studies in Mathematics 58 De Gruyter, Berlin (2014).
MR 3157451 |
Zbl 1288.82001
[7] Arous, G. Ben, Grădinaru, M.:
Hölder norms and the support theorem for diffusions. C. R. Acad. Sci., Paris, Sér. I 316 French (1993), 283-286.
MR 1205200
[8] Arous, G. Ben, Grădinaru, M., Ledoux, M.:
Hölder norms and the support theorem for diffusions. Ann. Inst. Henri Poincaré, Probab. Stat. 30 (1994), 415-436.
MR 1288358
[16] Prato, G. Da, Zabczyk, J.:
Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series 229 Cambridge Univ. Press, Cambridge (1996).
MR 1417491 |
Zbl 0849.60052
[17] Prato, G. Da, Zabczyk, J.:
Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1992).
MR 1207136 |
Zbl 0761.60052
[24] Ichihara, K., Kunita, H.:
A classification of the second order degenerate elliptic operators and its probabilistic characterization. Z. Wahrscheinlichkeitstheor. Verw. Geb. 30 (1974), 235-254.
DOI 10.1007/BF00533476 |
MR 0381007 |
Zbl 0326.60097
[25] Ichihara, K., Kunita, H.:
Supplements and corrections to the paper: ``A classification of the second order degenerate elliptic operators and its probabilistic characterization''. Z. Wahrscheinlichkeitstheor. Verw. Geb. 39 (1977), 81-84.
DOI 10.1007/BF01844875 |
MR 0488328 |
Zbl 0382.60069
[26] Ikeda, N., Watanabe, S.:
Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library 24 North-Holland; Publishing Co. Tokyo: Kodansha, Amsterdam (1989).
MR 1011252 |
Zbl 0684.60040
[27] Karczewska, A., Zabczyk, J.:
Stochastic {PDE}'s with function-valued solutions. Infinite Dimensional Stochastic Analysis. Proceedings of the Colloquium, Amsterdam, Netherlands, 1999 P. Clément et al. Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet. 52 Royal Netherlands Academy of Arts and Sciences, Amsterdam (2000), 197-216.
MR 1832378 |
Zbl 0990.60065
[28] Karczewska, A., Zabczyk, J.:
A note on stochastic wave equations. Evolution Equations and Their Applications in Physical and Life Sciences. Proc. Conf., Germany, 1999 G. Lumer et al. Lecture Notes in Pure and Appl. Math. 215 Marcel Dekker, New York (2001), 501-511.
MR 1818028 |
Zbl 0978.60066
[30] Maslowski, B., Seidler, J., Vrkoč, I.:
Integral continuity and stability for stochastic hyperbolic equations. Differ. Integral Equ. 6 (1993), 355-382.
MR 1195388 |
Zbl 0777.35096
[31] Matskyavichyus, V.:
The support of the solution of a stochastic differential equation. Lith. Math. J. 26 (1986), 91-98 Russian English translation Lith. Math. J. 26 57-62 (1986).
MR 0847207
[32] Mattingly, J. C., Stuart, A. M., Higham, D. J.:
Ergodicity for {SDE}s and approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Processes Appl. 101 (2002), 185-232.
MR 1931266 |
Zbl 1075.60072
[33] Meyn, S., Tweedie, R. L.:
Markov Chains and Stochastic Stability. With a prologue by Peter W. Glynn Cambridge University Press Cambridge (2009).
MR 2509253 |
Zbl 1165.60001
[38] Peszat, S.:
The Cauchy problem for a nonlinear stochastic wave equation in any dimension. J. Evol. Equ. 2 (2002), 383-394.
DOI 10.1007/PL00013197 |
MR 1930613
[41] Shatah, J., Struwe, M.:
Geometric Wave Equations. Courant Lecture Notes in Mathematics 2 New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (1998).
MR 1674843 |
Zbl 0993.35001
[42] Stroock, D. W., Varadhan, S. R. S.:
On the support of diffusion processes with applications to the strong maximum principle. Proc. Conf. Berkeley, Calififornia, 1970/1971, Vol. III: Probability Theory L. M. Le Cam et al. Univ. California Press Berkeley, Calififornia (1972), 333-359.
MR 0400425 |
Zbl 0255.60056