[1] Abbas, U., Lupulescu, V.:
Set functional differential equations. Commun. Appl. Nonlinear Anal. 18 (2011), 97-110.
MR 2815882 |
Zbl 1243.34108
[2] Beer, G.:
Topologies on Closed and Closed Convex Sets. Mathematics and Its Applications 268 Kluwer Academic Publishers, Dordrecht (1993).
MR 1269778 |
Zbl 0792.54008
[3] Coddington, E. A., Levinson, N.:
Theory of Ordinary Differential Equations. McGraw-Hill Book Company, New York (1955).
MR 0069338 |
Zbl 0064.33002
[5] Blasi, F. S. de, Iervolino, F.:
Equazioni differenziali con soluzioni a valore compatto convesso. Boll. Unione Mat. Ital., IV. Ser. 2 Italian (1969), 491-501.
Zbl 0195.38501
[6] Blasi, F. S. de, Lakshmikantham, V., Bhaskar, T. Gnana:
An existence theorem for set differential inclusions in a semilinear metric space. Control Cybern. 36 (2007), 571-582.
MR 2376040
[7] Debreu, G.:
Integration of correspondences. Proc. 5th Berkeley Symp. Math. Stat. Probab. (Univ. Calif. 1965/66). Vol. 2: Contributions to Probability Theory, Part 1 Univ. California Press, Berkeley, Calif. (1967), 351-372.
MR 0228252 |
Zbl 0211.52803
[9] Himmelberg, C. J.:
Precompact contraction of metric uniformities, and the continuity of {$F(t,x)$}. Rend. Semin. Mat. Univ. Padova 50 (1973), 185-188.
MR 0355958
[10] Hu, S., Papageorgiou, N. S.:
Handbook of Multivalued Analysis. Vol. I: Theory. Mathematics and Its Applications 419 Kluwer Academic Publishers, Dordrecht (1997).
MR 1485775
[13] Lakshmikantham, V., Bhaskar, T. Gnana, Devi, J. Vasundhara:
Theory of Set Differential Equations in Metric Spaces. Cambridge Scientific Publishers, Cambridge (2006).
MR 2438229
[15] Li, S., Ogura, Y., Kreinovich, V.:
Limit Theorems and Applications of Set-valued and Fuzzy Set-valued Random Variables. Theory and Decision Library. Series B: Mathematical and Statistical Methods 43 Kluwer Academic Publishers Group, Dordrecht (2002).
MR 2039695
[16] Pinto, A. J. B. Lopes, Blasi, F. S. De, Iervolino, F.:
Uniqueness and existence theorems for differential equations with compact convex valued solutions. Boll. Unione Mat. Ital., IV. Ser. 3 (1970), 47-54.
MR 0259306
[17] Lupulescu, V.:
Successive approximations to solutions of set differential equations in Banach spaces. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 391-401.
MR 2406754 |
Zbl 1153.34037
[21] Markov, S. M.:
Existence and uniqueness of solutions of the interval differential equation {$X^{\prime} =F(t, X)$}. C. R. Acad. Bulg. Sci. 31 (1978), 1519-1522.
MR 0548735
[22] Plotnikov, V. A., Rashkov, P. I.:
Averaging in differential equations with Hukuhara derivative and delay. Funct. Differ. Equ. 8 (2001), 371-381.
MR 1950981 |
Zbl 1046.34089
[23] Tolstonogov, A.:
Differential Inclusions in a Banach Space. Mathematics and Its Applications 524 Kluwer Academic Publishers, Dordrecht 2000. Translated from Russian.
MR 1888331 |
Zbl 1021.34002
[24] Devi, J. Vasundhara, Vatsala, A. S.:
A study of set differential equations with delay. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 287-300.
MR 2035268