[2] Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K.:
Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations. Numer. Methods Partial Differ. Equations 12 (1996), 347-392.
DOI 10.1002/num.1690120303 |
MR 1388445 |
Zbl 0854.65089
[3] Babuška, I., Whiteman, J. R., Strouboulis, T.:
Finite Elements. An Introduction to the Method and Error Estimation. Oxford University Press, Oxford (2011).
MR 2857237 |
Zbl 1206.65246
[5] Bergam, A., Mghazli, Z., Verfürth, R.:
A posteriori estimates of a finite volume scheme for a nonlinear problem. Numer. Math. French 95 (2003), 599-624.
MR 2013121 |
Zbl 1033.65095
[10] Brandts, J., Křížek, M.:
Superconvergence of tetrahedral quadratic finite elements. J. Comput. Math. 23 (2005), 27-36.
MR 2124141 |
Zbl 1072.65137
[12] Chatzipantelidis, P., Ginting, V., Lazarov, R. D.:
A finite volume element method for a nonlinear elliptic problem. Numer. Linear Algebra Appl. 12 (2005), 515-546.
DOI 10.1002/nla.439 |
MR 2150166
[13] Chen, Z.:
Superconvergence of generalized difference method for elliptic boundary value problem. Numer. Math., J. Chin. Univ. 3 (1994), 163-171.
MR 1325662 |
Zbl 0814.65102
[16] Chou, S.-H., Kwak, D. Y., Li, Q.:
$L^p$ error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equations 19 (2003), 463-486.
DOI 10.1002/num.10059 |
MR 1980190 |
Zbl 1029.65123
[20] Hlaváček, I., Křížek, M.: On a nonpotential nonmonotone second order elliptic problem with mixed boundary conditions. Stab. Appl. Anal. Contin. Media 3 (1993), 85-97.
[21] Hlaváček, I., Křížek, M., Malý, J.:
On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168-189.
DOI 10.1006/jmaa.1994.1192 |
MR 1275952
[23] Křížek, M., Neittaanmäki, P.:
Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Mathematical Modelling: Theory and Applications 1 Kluwer Academic Publishers, Dordrecht (1996).
MR 1431889
[26] Li, R., Chen, Z., Wu, W.:
Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Pure and Applied Mathematics Marcel Dekker, New York (2000).
MR 1731376 |
Zbl 0940.65125
[27] Lin, Q., Zhu, Q. D.: The Preprocessing and Postprocessing for the Finite Element Methods. Chinese Shanghai Sci. & Tech. Publishing Shanghai (1994).
[32] Wu, H., Li, R.:
Error estimates for finite volume element methods for general second-order elliptic problems. Numer. Methods Partial Differ. Equations 19 (2003), 693-708.
DOI 10.1002/num.10068 |
MR 2009589 |
Zbl 1040.65091
[33] Zhang, T.: Finite Element Methods for Partial Differential-Integral Equations. Chinese Science Press, Beijing (2012).
[34] Zhang, T., Lin, Y. P., Tait, R. J.:
On the finite volume element version of Ritz-Volterra projection and applications to related equations. J. Comput. Math. 20 (2002), 491-504.
MR 1931591 |
Zbl 1013.65143
[35] Zhu, Q. D., Lin, Q.:
The Superconvergence Theory of Finite Elements. Chinese Hunan Science and Technology Publishing House Changsha (1989).
MR 1200243