Previous |  Up |  Next

Article

Keywords:
finite volume method; nonlinear elliptic problem; local and global superconvergence in the $W^{1,\infty }$-norm; a posteriori error estimator
Summary:
We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of $C$-uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set $S$, the gradient approximation possesses the superconvergence: $\max \nolimits _{P\in S}|(\nabla u-\overline {\nabla }u_h)(P)|=O(h^2)\mathopen |\ln h|^{{3}/{2}}$, where $\overline {\nabla }$ denotes the average gradient on elements containing vertex $P$. Furthermore, by using the interpolation post-processing technique, we also derive a global superconvergence estimate in the $H^1$-norm and establish an asymptotically exact a posteriori error estimator for the error $\|u-u_h\|_1$.
References:
[1] Babuška, I., Banerjee, U., Osborn, J. E.: Superconvergence in the generalized finite element method. Numer. Math. 107 (2007), 353-395. DOI 10.1007/s00211-007-0096-8 | MR 2336112 | Zbl 1129.65075
[2] Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K.: Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations. Numer. Methods Partial Differ. Equations 12 (1996), 347-392. DOI 10.1002/num.1690120303 | MR 1388445 | Zbl 0854.65089
[3] Babuška, I., Whiteman, J. R., Strouboulis, T.: Finite Elements. An Introduction to the Method and Error Estimation. Oxford University Press, Oxford (2011). MR 2857237 | Zbl 1206.65246
[4] Bank, R. E., Rose, D. J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987), 777-787. DOI 10.1137/0724050 | MR 0899703 | Zbl 0634.65105
[5] Bergam, A., Mghazli, Z., Verfürth, R.: A posteriori estimates of a finite volume scheme for a nonlinear problem. Numer. Math. French 95 (2003), 599-624. MR 2013121 | Zbl 1033.65095
[6] Bi, C.: Superconvergence of finite volume element method for a nonlinear elliptic problem. Numer. Methods Partial Differ. Equations 23 (2007), 220-233. DOI 10.1002/num.20173 | MR 2275467 | Zbl 1119.65105
[7] Bi, C., Ginting, V.: Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 108 (2007), 177-198. DOI 10.1007/s00211-007-0115-9 | MR 2358002 | Zbl 1134.65077
[8] Brandts, J. H.: Analysis of a non-standard mixed finite element method with applications to superconvergence. Appl. Math., Praha 54 (2009), 225-235. DOI 10.1007/s10492-009-0014-8 | MR 2530540 | Zbl 1212.65441
[9] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003), 489-505. DOI 10.1093/imanum/23.3.489 | MR 1987941 | Zbl 1042.65081
[10] Brandts, J., Křížek, M.: Superconvergence of tetrahedral quadratic finite elements. J. Comput. Math. 23 (2005), 27-36. MR 2124141 | Zbl 1072.65137
[11] Cai, Z.: On the finite volume element method. Numer. Math. 58 (1991), 713-735. DOI 10.1007/BF01385651 | MR 1090257 | Zbl 0731.65093
[12] Chatzipantelidis, P., Ginting, V., Lazarov, R. D.: A finite volume element method for a nonlinear elliptic problem. Numer. Linear Algebra Appl. 12 (2005), 515-546. DOI 10.1002/nla.439 | MR 2150166
[13] Chen, Z.: Superconvergence of generalized difference method for elliptic boundary value problem. Numer. Math., J. Chin. Univ. 3 (1994), 163-171. MR 1325662 | Zbl 0814.65102
[14] Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47 (2010), 4021-4043. DOI 10.1137/080720164 | MR 2585177 | Zbl 1261.65109
[15] Chen, Z., Li, R., Zhou, A.: A note on the optimal $L^2$-estimate of the finite volume element method. Adv. Comput. Math. 16 (2002), 291-303. DOI 10.1023/A:1014577215948 | MR 1894926 | Zbl 0997.65122
[16] Chou, S.-H., Kwak, D. Y., Li, Q.: $L^p$ error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equations 19 (2003), 463-486. DOI 10.1002/num.10059 | MR 1980190 | Zbl 1029.65123
[17] J. Douglas, Jr., T. Dupont: A Galerkin method for a nonlinear Dirichlet problem. Math. Comp. 29 (1975), 689-696. DOI 10.1090/S0025-5718-1975-0431747-2 | MR 0431747 | Zbl 0306.65072
[18] J. Douglas, Jr., T. Dupont, J. Serrin: Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form. Arch Ration. Mech. Anal. 42 (1971), 157-168. DOI 10.1007/BF00250482 | MR 0393829 | Zbl 0222.35017
[19] Ewing, R. E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2002), 1865-1888. DOI 10.1137/S0036142900368873 | MR 1897941 | Zbl 1036.65084
[20] Hlaváček, I., Křížek, M.: On a nonpotential nonmonotone second order elliptic problem with mixed boundary conditions. Stab. Appl. Anal. Contin. Media 3 (1993), 85-97.
[21] Hlaváček, I., Křížek, M., Malý, J.: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168-189. DOI 10.1006/jmaa.1994.1192 | MR 1275952
[22] Huang, J., Li, L.: Some superconvergence results for the covolume method for elliptic problems. Commun. Numer. Methods Eng. 17 (2001), 291-302. DOI 10.1002/cnm.403 | MR 1832578 | Zbl 0987.65109
[23] Křížek, M., Neittaanmäki, P.: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Mathematical Modelling: Theory and Applications 1 Kluwer Academic Publishers, Dordrecht (1996). MR 1431889
[24] Lazarov, R. D., Mishev, I. D., Vassilevski, P. S.: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996), 31-55. DOI 10.1137/0733003 | MR 1377242 | Zbl 0847.65075
[25] Li, R.: Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal. 24 (1987), 77-88. DOI 10.1137/0724007 | MR 0874736 | Zbl 0626.65091
[26] Li, R., Chen, Z., Wu, W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Pure and Applied Mathematics Marcel Dekker, New York (2000). MR 1731376 | Zbl 0940.65125
[27] Lin, Q., Zhu, Q. D.: The Preprocessing and Postprocessing for the Finite Element Methods. Chinese Shanghai Sci. & Tech. Publishing Shanghai (1994).
[28] Lv, J., Li, Y.: $L^2$ error estimates and superconvergence of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math. 37 (2012), 393-416. DOI 10.1007/s10444-011-9215-2 | MR 2970858 | Zbl 1255.65198
[29] Schmidt, T.: Box schemes on quadrilateral meshes. Computing 51 (1993), 271-292. DOI 10.1007/BF02238536 | MR 1253406 | Zbl 0787.65075
[30] Süli, E.: Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991), 1419-1430. DOI 10.1137/0728073 | MR 1119276 | Zbl 0802.65104
[31] Wahlbin, L. B.: Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Mathematics 1605 Springer, Belin (1995). DOI 10.1007/BFb0096835 | MR 1439050 | Zbl 0826.65092
[32] Wu, H., Li, R.: Error estimates for finite volume element methods for general second-order elliptic problems. Numer. Methods Partial Differ. Equations 19 (2003), 693-708. DOI 10.1002/num.10068 | MR 2009589 | Zbl 1040.65091
[33] Zhang, T.: Finite Element Methods for Partial Differential-Integral Equations. Chinese Science Press, Beijing (2012).
[34] Zhang, T., Lin, Y. P., Tait, R. J.: On the finite volume element version of Ritz-Volterra projection and applications to related equations. J. Comput. Math. 20 (2002), 491-504. MR 1931591 | Zbl 1013.65143
[35] Zhu, Q. D., Lin, Q.: The Superconvergence Theory of Finite Elements. Chinese Hunan Science and Technology Publishing House Changsha (1989). MR 1200243
Partner of
EuDML logo