[1] Barrio, E., Giné, E., Matrán, E.:
Central limit theorems for a Wasserstein distance between empirical and the true distributions. Ann. Probab. 27 (1999), 2, 1009-1071.
DOI 10.1214/aop/1022677394 |
MR 1698999
[3] Birge, J. R., Louveaux, F.: Introduction in Stochastic Programming. Springer, Berlin 1992.
[5] Dentcheva, D., Ruszczynski, A.:
Porfolio optimization with stochastic dominance constraints. J. Banking and Finance 30 (2006), 433-451.
DOI 10.1016/j.jbankfin.2005.04.024
[6] Dupačová, J., B.Wets, R. J.:
Asymptotic behaviour of statistical estimates and optimal solutions of stochastic optimization problems. Ann. Statist. 16 (1984), 1517-1549.
DOI 10.1214/aos/1176351052 |
MR 0964937
[7] Dvoretzky, A., Kiefer, J., Wolfowitz, J.:
Asymptotic minimax character of the sample distribution function and the classical multinomial estimate. Ann. Math. Statist. 56 (1956), 642-669.
DOI 10.1214/aoms/1177728174 |
MR 0083864
[8] Ermoliev, Y. M., Norkin, V.:
Sample everage approximation method for compound stochastic optimization problems. SIAM J. Optim. 23 (2013), 4, 2231-2263.
DOI 10.1137/120863277 |
MR 3129765
[10] Houda, M.: Stability and Approximations for Stochastic Programs. Doctoral Thesis, Faculty of Mathematics and Physics, Charles University Prague, Prague 2009.
[11] Houda, M., Kaňková, V.: Empirical estimates in economic and financial optimization problems. Bull. Czech Econometr. Soc. 19 (2012), 29, 50-69.
[12] Kaniovski, Y. M., King, A. J., Wets, R. J.-B.:
Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems. Ann. Oper. Res. 56 (1995), 189-208.
DOI 10.1007/bf02031707 |
MR 1339792 |
Zbl 0835.90055
[13] Kaňková, V.:
Optimum solution of a stochastic optimization problem. In: Trans. 7th Prague Conf. 1974, Academia, Prague 1977, pp. 239-244.
MR 0519478 |
Zbl 0408.90060
[14] Kaňková, V.:
An approximative solution of stochastic optimization problem. In: Trans. 8th Prague Conf., Academia, Prague 1978, pp. 349-353.
MR 0536792
[15] Kaňková, V., Lachout, P.:
Convergence rate of empirical estimates in stochastic programming. Informatica 3 (1992), 4, 497-523.
MR 1243755 |
Zbl 0906.90133
[16] Kaňková, V.:
Stability in stochastic programming - the case of unknown location parameter. Kybernetika 29 (1993), 1, 97-112.
MR 1227744 |
Zbl 0803.90096
[18] Kaňková, V.:
On the stability in stochastic programming: the case of individual probability constraints. Kybernetika 33 (1997), 5, 525-544.
MR 1603961 |
Zbl 0908.90198
[19] Kaňková, V., Houda, M.:
Empirical estimates in stochastic programming. In: Proc. Prague Stochastics 2006 (M. Hušková and M. Janžura, eds.), MATFYZPRESS, Prague 2006, pp. 426-436.
Zbl 1162.90528
[20] Kaňková, V., Houda, M.: Dependent samples in empirical estimation of stochastic programming problems. Austrian J. Statist. 35 (2006), 2 - 3, 271-279.
[21] Kaňková, V.:
Empirical estimates in stochastic programming via distribution tails. Kybernetika 46 (2010), 3, 459-471.
MR 2676083
[22] Kaňková, V.: Empirical estimates in optimization problems: survey with special regard to heavy tails and dependent samples. Bull. Czech Econometr. Soc. 19 (2012), 30, 92-111.
[23] Kaňková, V.: Risk measures in optimization problems via empirical estimates. Czech Econom. Rev. VII (2013), 3, 162-177.
[24] Klebanov, L. B.: Heavy Tailed Distributions. MATFYZPRESS, Prague 2003.
[25] Meerschaert, M. M., H.-P.Scheffler:
Limit Distributions for Sums of Independent Random Vectors (Heavy Tails in Theory and Practice). John Wiley and Sons, New York 2001.
MR 1840531
[26] Meerschaert, M. M., H.-P.Scheffler: Portfolio Modelling with Heavy Tailed Random Vectors. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier, Amsterdam 2003, pp. 595-640.
[27] Meerschaert, M. M., H.-P.Scheffler: Portfolio Modeling with Heavy Tailed Random Vectors. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier, Amsterdam 2003, pp. 595-640.
[28] Pflug, G. Ch.:
Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. Ser. B 89 (2001), 251-271.
DOI 10.1007/pl00011398 |
MR 1816503
[29] Pflug, G. Ch.:
Stochastic Optimization and Statistical Inference. In: Handbooks in Operations Research and Managemennt 10, Stochastic Programming (A. Ruszczynski and A. A. Shapiro, eds.) Elsevier, Amsterdam 2003, pp. 427-480.
MR 2052759
[30] Pflug, G. Ch., Römisch, W.:
Modeling Measuring and Managing Risk. World Scientific Publishing Co. Pte. Ltd, New Jersey 2007.
MR 2424523 |
Zbl 1153.91023
[31] Rachev, S. T., Römisch, W.:
Quantitative stability and stochastic programming: the method of probabilistic metrics. Math. Oper. Res. 27 (2002), 792-818.
DOI 10.1287/moor.27.4.792.304 |
MR 1939178
[32] Rockafellar, R., Wets, R. J. B.:
Variational Analysis. Springer, Berlin 1983.
Zbl 0888.49001
[33] Römisch, W., Wakolbinger, A.:
Obtaining Convergence Rate for Approximation in Stochastic Programming. In: Parametric Optimization and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer and F. Nožička, eds.), Akademie-Verlag, Berlin 1987, pp. 327-343.
MR 0909737
[34] Römisch, W.:
Stability of Stochastic Programming Problems. In: Handbooks in Operations Research and Managemennt Science 10, Stochastic Programming (A. Ruszczynski and A. A. Shapiro, eds.) Elsevier, Amsterdam 2003, pp. 483-554.
MR 2052760
[35] Salinetti, G., Wets, R. J.-B.:
On the convergence of sequence of convex sets in finite dimensions. SIAM Rev. 21 (1979), 16-33.
DOI 10.1137/1021002 |
MR 0516381
[36] Samarodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes. Chapman and Hall, New York 1994.
[40] Shapiro, A., Dentcheva, D., Ruszczynski, A.:
Lectures on Stochastic Programming (Modeling and Theory). Published by Society for Industrial and Applied Mathematics and Mathematical Programming Society, Philadelphia 2009.
MR 2562798 |
Zbl 1302.90003
[41] Shiryaev, A. N.:
Essential of Stochastic Finance (Facts, Models, Theory). World Scientific, New Jersey 2008.
MR 1695318
[42] Shorack, G. R., Wellner, J. A.:
Empirical Processes and Applications to Statistics. Wiley, New York 1986.
MR 0838963
[43] Šmíd, M.:
The expected loss in the discretezation of multistage stochastic programming problems - estimation and convergence rate. Ann. Oper. Res. 165 (2009), 1, 29-45.
DOI 10.1007/s10479-008-0355-9 |
MR 2470981
[44] Wets, R. J.-B.: A Statistical Approach to the Solution of Stochastic Programs with (Convex) Simple Recourse. Research Report, University of Kentucky 1974.