Previous |  Up |  Next

Article

Keywords:
Choquet integral; Choquet-like integral; level-dependent capacity; $\varphi $-ordinal sum of aggregation functions
Summary:
In this study we merge the concepts of Choquet-like integrals and the Choquet integral with respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent capacities our approach can be represented as a $\varphi$-ordinal sum of Choquet-like integrals acting on subdomains of the considered scale, and thus it can be regarded as extension method. The approach is illustrated by several examples.
References:
[1] Choquet, G.: Theory of capacities. Annales de l'Institite Fourier 5 (1953-1954), 131-295. DOI 10.5802/aif.53 | MR 0080760 | Zbl 0679.01011
[2] Denneberg, D.: Non-additive Measure and Integral. In: Theory and Decision Library. Series B: Mathematical and Statistical Methods 27. Kluwer Academic Publishers Group, Dordrecht 1994. DOI 10.1007/978-94-017-2434-0 | MR 1320048 | Zbl 0968.28009
[3] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge 2009. DOI 10.1109/sisy.2008.4664901 | MR 2538324 | Zbl 1206.68299
[4] Greco, S., Matarazzo, B., Giove, S.: The Choquet integral with respect to a level dependent capacity. Fuzzy Sets and Systems 175 (2011), 1-35. DOI 10.1016/j.fss.2011.03.012 | MR 2803409 | Zbl 1218.28014
[5] Mesiar, R.: Choquet-like integrals. J. Math. Anal. Appl. 194 (1995), 477-488. DOI 10.1006/jmaa.1995.1312 | MR 1345050 | Zbl 0845.28010
[6] Mesiar, R., Baets, B. De: New construction methods for aggregation operators. In: Proc. IPMU'2000, Madrid, pp. 701-706.
[7] Pap, E., ed.: Handbook of Measure Theory. Vol. I, II. North-Holland, Amsterdam 2002. DOI 10.1016/b978-044450263-6/50000-2 | MR 1953489
[8] Pap, E.: An integral generated by a decomposable measure. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 135-144. MR 1158414 | Zbl 0754.28002
[9] Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral, I, II, III. Kybernetika 41 (2005) I: 397-422, II: 469-496, III: 497-518. MR 2181427
[10] Schmeidler, D.: Integral representation without additivity. Proc. Amer. Math. Soc. 97 (1986), 255-261. DOI 10.1090/s0002-9939-1986-0835875-8 | MR 0835875 | Zbl 0687.28008
[11] Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57 (1989), 571-87. DOI 10.2307/1911053 | MR 0999273 | Zbl 0672.90011
[12] Sugeno, M.: Theory of Fuzzy Integrals and its Applications. PhD Thesis, Tokyo Institute of Technology, 1974.
[13] Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197-222. DOI 10.1016/0022-247x(87)90354-4 | MR 0874969 | Zbl 0611.28010
[14] Vitali, G.: Sula definizione di integrale delle funzioni di una variabile. Ann. Mat. Pura Appl. 2 (1925), 111-121. English translation: On the definition of integral of functions of one variable. Rivista di Matematica per le Scienze Sociali 20 (1997), 159-168. DOI 10.1007/BF02409934 | MR 1553076
[15] Wang, Z., Klir, G. J.: Generalized Measure Theory. Springer, 2009. DOI 10.1007/978-0-387-76852-6 | MR 2453907 | Zbl 1184.28002
Partner of
EuDML logo