[1] Alves, C.O., Corrêa, F.J.S.A., Figueiredo, G.M.:
On a class of nonlocal elliptic problems with critical growth. Differential Equation and Applications, 2, 2010, 409-417,
DOI 10.7153/dea-02-25 |
MR 2731312 |
Zbl 1198.35281
[2] Azorero, J.G., Alonso, I.P.:
Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Amer. Math. Soc., 323, 2, 1991, 877-895,
DOI 10.2307/2001562 |
MR 1083144 |
Zbl 0729.35051
[3] Hamidi, A. El, Rakotoson, J.M.:
Compactness and quasilinear problems with critical exponents. Differ. Integral Equ., 18, 2005, 1201-1220,
MR 2174817 |
Zbl 1212.35113
[5] Figueiredo, G. M., Santos, Jefferson A.:
On a $\Phi $-Kirchhoff multivalued problem with critical growth in an Orlicz-Sobolev space. Asymptotic Analysis, 89, 1, 2014, 151-172,
MR 3251917 |
Zbl 1304.35254
[7] Fukagai, N., Narukawa, K.:
Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on RN. Funkciallaj Ekvacioj, 49, 1981, 235-267,
DOI 10.1619/fesi.49.235 |
MR 2271234
[8] Lions, P. L.:
The concentraction-compactness principle in the calculus of virations. The limit case, Part 1. Rev Mat Iberoamericana, 1, 1985, 145-201,
DOI 10.4171/RMI/6 |
MR 0834360
[10] Pucci, P.: Geometric description of the mountain pass critical points. Contemporary Mathematicians, 2, 2014, 469-471.
[11] Pucci, P., Saldi, S.:
Critical stationary Kirchhoff equations in $R^N$ involving nonlocal operators. Rev. Mat. Iberoam., 2014,
MR 3470662