Previous |  Up |  Next

Article

Keywords:
fractional difference system; stability; Laplace transform
Summary:
This paper deals with basic stability properties of a two-term linear autonomous fractional difference system involving the Riemann-Liouville difference. In particular, we focus on the case when eigenvalues of the system matrix lie on a boundary curve separating asymptotic stability and unstability regions. This issue was posed as an open problem in the paper J. Čermák, T. Kisela, and L. Nechvátal (2013). Thus, the paper completes the stability analysis of the corresponding fractional difference system.
References:
[1] Akin-Bohner, E., Bohner, M.: Exponential functions and Laplace transforms for alpha derivates. New Progress in Difference Equations. Proc. of the 6th International Conf. on Difference Equations, Augsburg, Germany, 2001 CRC Press Boca Raton (2004), 231-237 B. Aulbach et al. MR 2092559 | Zbl 1066.39014
[2] Atıcı, F. M., Eloe, P.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. (electronic only), Special Issue I (2009), Article No. 3, 12 pages. MR 2558828 | Zbl 1189.39004
[3] Čermák, J., Kisela, T., Nechvátal, L.: Stability regions for linear fractional differential systems and their discretizations. Appl. Math. Comput. 219 (2013), 7012-7022. DOI 10.1016/j.amc.2012.12.019 | MR 3027865 | Zbl 1288.34005
[4] Čermák, J., Kisela, T., Nechvátal, L.: Stability and asymptotic properties of a linear fractional difference equation. Adv. Difference Equ. (electronic only) (2012),2012:122 14 pages. MR 2972648
[5] Čermák, J., Nechvátal, L.: On $(q, h)$-analogue of fractional calculus. J. Nonlinear Math. Phys. 17 (2010), 51-68. DOI 10.1142/S1402925110000593 | MR 2647460 | Zbl 1189.26006
[6] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). MR 2218073 | Zbl 1092.45003
[7] Li, C. P., Zhang, F. R.: A survey on the stability of fractional differential equations. Eur. Phys. J. Special Topics 193 (2011), 27-47. DOI 10.1140/epjst/e2011-01379-1
[8] Lubich, C.: A stability analysis of convolution quadratures for Abel-Volterra integral equations. IMA J. Numer. Anal. 6 (1986), 87-101. DOI 10.1093/imanum/6.1.87 | MR 0967683 | Zbl 0587.65090
[9] Matignon, D.: Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems Applications, Lille, France (1996), 963-968.
[10] Mozyrska, D., Girejko, E.: Overview of fractional $h$-difference operators. Advances in Harmonic Analysis and Operator Theory. Mainly based on the presentations at two conferences, Lisbon and Aveiro, Portugal, 2011 Oper. Theory Adv. Appl. 229 Birkhäuser, Basel (2013), 253-268 A. Almeida et al. MR 3060418 | Zbl 1262.39024
[11] Oldham, K. B., Myland, J., Spanier, J.: An Atlas of Functions. With Equator, the Atlas Function Calculator. Springer, New York (2008). MR 2466333 | Zbl 1167.65001
[12] Petráš, I.: Stability of fractional-order systems with rational orders: A survey. Fract. Calc. Appl. Anal. 12 (2009), 269-298. MR 2572711 | Zbl 1182.26017
[13] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198 Academic Press, San Diego (1999). MR 1658022 | Zbl 0924.34008
[14] Qian, D., Li, C., Agarwal, R. P., Wong, P. J. Y.: Stability analysis of fractional differential system with Riemann-Liouville derivative. Math. Comput. Modelling 52 (2010), 862-874. DOI 10.1016/j.mcm.2010.05.016 | MR 2661771 | Zbl 1202.34020
Partner of
EuDML logo