[1] Castillo-Chavez, C., Thieme, H. R.: Asymptotically autonomous epidemic models. Mathematical Population Dynamics: Analysis of Heterogeneity I. Theory of Epidemics 1 Wuerz Pub. 33-50 (1995).
[2] Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H.-O.:
Delay Equations. Functional-, Complex-, and Nonlinear Analysis. Applied Mathematical Sciences 110 Springer, New York (1995).
MR 1345150
[4] Knipl, D. H.:
Fundamental properties of differential equations with dynamically defined delayed feedback. Electron. J. Qual. Theory Differ. Equ. 2013 (2013), Article No. 17, 18 pages.
MR 3033802
[5] Knipl, D. H., Röst, G., Wu, J.:
Epidemic spread and variation of peak times in connected regions due to travel-related infections---dynamics of an antigravity-type delay differential model. SIAM J. Appl. Dyn. Syst. (electronic only) 12 (2013), 1722-1762.
DOI 10.1137/130914127 |
MR 3116637 |
Zbl 1284.34119
[8] Nakata, Y.:
On the global stability of a delayed epidemic model with transport-related infection. Nonlinear Anal., Real World Appl. 12 (2011), 3028-3034.
MR 2832945 |
Zbl 1231.34128
[11] Smith, H. L.:
Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs 41 American Mathematical Society, Providence (1995).
MR 1319817 |
Zbl 0821.34003