[1] Balasubramaniam, P., Vembarasan, V., Senthilkumar, T.:
Approximate controllability of impulsive fractional integro-differential systems with nonlocal conditions in Hilbert space. Numer. Funct. Anal. Optim. 35 (2014), 177-197.
DOI 10.1080/01630563.2013.811420 |
MR 3175636 |
Zbl 1288.34074
[2] Caputo, M.: Elasticità e dissipazione. Zanichelli Publisher, Bologna Italian (1969).
[3] Cont, R., Tankov, P.:
Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series Chapman & Hall/CRC, Boca Raton (2004).
MR 2042661 |
Zbl 1052.91043
[4] Cui, J., Yan, L.:
Existence result for fractional neutral stochastic integro-differential equations with infinite delay. J. Phys. A, Math. Theor. 44 (2011), Article ID 335201, 16 pages.
MR 2822114 |
Zbl 1232.34107
[6] Prato, G. Da, Zabczyk, J.:
Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1992).
MR 1207136 |
Zbl 0761.60052
[7] Dabas, J., Chauhan, A., Kumar, M.:
Existence of the mild solutions for impulsive fractional equations with infinite delay. Int. J. Differ. Equ. 2011 (2011), Article ID 793023, 20 pages.
MR 2843512 |
Zbl 1239.34094
[9] Hasse, M.:
The Functional Calculus for Sectorial Operators. Operator theory: Advances and Applications. Vol. 196 Birkhäuser, Basel (2006).
MR 2244037
[11] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.:
Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006).
MR 2218073 |
Zbl 1092.45003
[12] Kolmanovskii, V., Myshkis, A.:
Applied Theory of Functional Differential Equations. Mathematics and Its Applications. Soviet Series 85 Kluwer Academic Publishers, Dordrecht (1992).
MR 1256486
[13] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.:
Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989).
MR 1082551 |
Zbl 0719.34002
[14] Liu, J., Yan, L., Cang, Y.:
On a jump-type stochastic fractional partial differential equation with fractional noises. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 6060-6070.
DOI 10.1016/j.na.2012.06.012 |
MR 2956125 |
Zbl 1246.35215
[15] Long, H., Hu, J., Li, Y.: Approximate controllability of stochastic PDE with infinite delays driven by Poisson jumps. IEEE International Conference on Information Science and Technology. Wuhan, Hubei, China (2012), 23-25.
[17] Miller, K. S., Ross, B.:
An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication John Wiley & Sons, New York (1993).
MR 1219954 |
Zbl 0789.26002
[18] Muthukumar, P., Rajivganthi, C.:
Approximate controllability of fractional order stochastic variational inequalities driven by Poisson jumps. Taiwanese J. Math. 18 (2014), 1721-1738.
DOI 10.11650/tjm.18.2014.3885 |
MR 3284028
[19] Ren, Y., Zhou, Q., Chen, L.:
Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with Poisson jumps and infinite delay. J. Optim. Theory Appl. 149 (2011), 315-331.
DOI 10.1007/s10957-010-9792-0 |
MR 2787714 |
Zbl 1241.34089
[20] Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S. M.:
Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 3498-3508.
DOI 10.1016/j.cnsns.2013.05.015 |
MR 3081379
[22] Sakthivel, R., Revathi, P., Ren, Y.:
Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 81 (2013), 70-86.
DOI 10.1016/j.na.2012.10.009 |
MR 3016441 |
Zbl 1261.34063