[1] Adamowicz, T., Harjulehto, P., Hästö, P.:
Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces. Math. Scand. 116 (2015), 5-22.
DOI 10.7146/math.scand.a-20448 |
MR 3322604
[2] Adams, D. R., Hedberg, L. I.:
Function Spaces and Potential Theory. Fundamental Principles of Mathematical Sciences 314 Springer, Berlin (1996).
MR 1411441
[3] Adams, R. A.:
Sobolev Spaces. Pure and Applied Mathematics 65 Academic Press, New York (1975).
MR 0450957 |
Zbl 0314.46030
[4] ssaoui, N. Aï:
Another extension of Orlicz-Sobolev spaces to metric spaces. Abstr. Appl. Anal. 2004 (2004), 1-26.
MR 2058790
[6] Björn, A., Björn, J.:
Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17 European Mathematical Society, Zürich (2011).
MR 2867756 |
Zbl 1231.31001
[7] Bojarski, B., Hajłasz, P.:
Pointwise inequalities for Sobolev functions and some applications. Stud. Math. 106 (1993), 77-92.
MR 1226425 |
Zbl 0810.46030
[9] Cruz-Uribe, D. V., Fiorenza, A.:
Variable Lebesgue Spaces. Foundations and Harmonic Analysis Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013).
MR 3026953 |
Zbl 1268.46002
[10] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.:
Corrections to: ``The maximal function on variable {$L^p$} spaces''. Ann. Acad. Sci. Fenn., Math. 29 (2004), 247-249 Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238.
MR 2041952
[12] Diening, L.:
Maximal function on generalized Lebesgue spaces {$L^{p(\cdot)}$}. Math. Inequal. Appl. 7 (2004), 245-253.
MR 2057643 |
Zbl 1071.42014
[14] Diening, L., Harjulehto, P., Hästö, P., R\ružička, M.:
Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011).
MR 2790542
[15] Evans, L. C., Gariepy, R. F.:
Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics CRC Press, Boca Raton (1992).
MR 1158660 |
Zbl 0804.28001
[19] Futamura, T., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.:
Variable exponent spaces on metric measure spaces. More Progresses in Analysis. Proceedings of the 5th International ISAAC Congress, Catania, Italy, 2005 World Scientific Hackensack (2009), 107-121 H. G. W. Begehr et al.
Zbl 1189.46027
[20] Futamura, T., Mizuta, Y., Shimomura, T.:
Sobolev embeddings for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522.
MR 2248828 |
Zbl 1100.31002
[21] Hajłasz, P.:
Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), 403-415.
Zbl 0859.46022
[23] Hajłasz, P., Koskela, P.:
Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), no. 688, 101 pages.
MR 1683160 |
Zbl 0954.46022
[25] Harjulehto, P., Hästö, P.:
Lebesgue points in variable exponent spaces. Ann. Acad. Sci. Fenn., Math. 29 (2004), 295-306.
MR 2097234 |
Zbl 1079.46022
[26] Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S.:
Sobolev capacity on the space {$W^{1,p(\cdot)}(\Bbb R^n)$}. J. Funct. Spaces Appl. 1 (2003), 17-33.
MR 2011498
[27] Harjulehto, P., Hästö, P., Koskenoja, M.:
Properties of capacities in variable exponent Sobolev spaces. J. Anal. Appl. 5 (2007), 71-92.
MR 2314780 |
Zbl 1143.31003
[29] Harjulehto, P., Hästö, P., Latvala, V.:
Lebesgue points in variable exponent Sobolev spaces on metric measure spaces. Zb. Pr. Inst. Mat. NAN Ukr. 1 (2004), 87-99.
MR 2097234 |
Zbl 1199.46079
[30] Harjulehto, P., Hästö, P., Martio, O.:
Fuglede's theorem in variable exponent Sobolev space. Collect. Math. 55 (2004), 315-324.
MR 2099221 |
Zbl 1070.46023
[32] Harjulehto, P., Hästö, P., Pere, M.:
Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator. Real Anal. Exch. 30 (2005), 87-104.
MR 2126796 |
Zbl 1072.42016
[33] Heinonen, J.:
Lectures on Analysis on Metric Spaces. Universitext Springer, New York (2001).
MR 1800917 |
Zbl 0985.46008
[37] Kinnunen, J., Martio, O.:
Choquet property for the Sobolev capacity in metric spaces. Proceedings on Analysis and Geometry Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat. Novosibirsk (2000), 285-290 S. K. Vodop'yanov Russian.
MR 1847522 |
Zbl 0992.46023
[38] Kinnunen, J., Martio, O.:
The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn., Math. 21 (1996), 367-382.
MR 1404091 |
Zbl 0859.46023
[40] Kokilashvili, V., Samko, S.:
On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. Z. Anal. Anwend. 22 (2003), 889-910.
MR 2036935 |
Zbl 1040.42013
[42] Maeda, F.-Y., Mizuta, Y., Ohno, T.:
Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces {$L^{p(\cdot)}(\log L)^{q(\cdot)}$}. Ann. Acad. Sci. Fenn., Math. 35 (2010), 405-420.
DOI 10.5186/aasfm.2010.3526 |
MR 2731699 |
Zbl 1216.46025
[43] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.:
Approximate identities and Young type inequalities in Musielak-Orlicz spaces. Czech. Math. J. 63 (2013), 933-948.
DOI 10.1007/s10587-013-0063-8 |
MR 3165506
[45] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.:
Mean continuity for potentials of functions in Musielak-Orlicz spaces. Potential Theory and Its Related Fields RIMS Kôkyûroku Bessatsu B43 Research Institute for Mathematical Sciences, Kyoto University, Kyoto (2013), 81-100 K. Hirata.
MR 3220454 |
Zbl 1303.46022
[47] Mizuta, Y., Ohno, T., Shimomura, T.:
Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space {$L^{p(\cdot)}(\log L)^{q(\cdot)}$}. J. Math. Anal. Appl. 345 (2008), 70-85.
DOI 10.1016/j.jmaa.2008.03.067 |
MR 2422635 |
Zbl 1153.31002
[49] Mizuta, Y., Shimomura, T.:
Continuity of Sobolev functions of variable exponent on metric spaces. Proc. Japan Acad., Ser. A 80 (2004), 96-99.
MR 2075449 |
Zbl 1072.46506
[50] Musielak, J.:
Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034 Springer, Berlin (1983).
MR 0724434 |
Zbl 0557.46020
[52] Stein, E. M.:
Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30 Princeton University Press, Princeton (1970).
MR 0290095 |
Zbl 0207.13501
[53] Tuominen, H.:
Orlicz-Sobolev spaces on metric measure spaces. Ann. Acad. Sci. Fenn. Math. Diss. (2004), 135 86 pages.
MR 2046571 |
Zbl 1068.46022
[54] Ziemer, W. P.:
Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation Graduate Texts in Mathematics 120 Springer, Berlin (1989).
MR 1014685 |
Zbl 0692.46022