Previous |  Up |  Next

Article

Keywords:
$ss$-supplemented subgroup; solvable group; supersolvable group
Summary:
A subgroup $H$ of a finite group $G$ is said to be $ss$-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is $s$-permutable in $K$. In this paper, we first give an example to show that the conjecture in A. A. Heliel's paper (2014) has negative solutions. Next, we prove that a finite group $G$ is solvable if every subgroup of odd prime order of $G$ is $ss$-supplemented in $G$, and that $G$ is solvable if and only if every Sylow subgroup of odd order of $G$ is $ss$-supplemented in $G$. These results improve and extend recent and classical results in the literature.
References:
[1] Arad, Z., Ward, M. B.: New criteria for the solvability of finite groups. J. Algebra 77 (1982), 234-246. DOI 10.1016/0021-8693(82)90288-5 | MR 0665175 | Zbl 0486.20018
[2] Asaad, M., Ramadan, M.: Finite groups whose minimal subgroups are {$c$}-supplemented. Commun. Algebra 36 (2008), 1034-1040. DOI 10.1080/00927870701776805 | MR 2394268 | Zbl 1156.20017
[3] Ballester-Bolinches, A., Wang, Y., Xiuyun, G.: {$c$}-supplemented subgroups of finite groups. Glasg. Math. J. 42 (2000), 383-389. DOI 10.1017/S001708950003007X | MR 1793807 | Zbl 0968.20009
[4] Ballester-Bolinches, A., Xiuyun, G.: On complemented subgroups of finite groups. Arch. Math. 72 (1999), 161-166. DOI 10.1007/s000130050317 | MR 1671273 | Zbl 0929.20015
[5] Doerk, K., Hawkes, T. O.: Finite Soluble Groups. de Gruyter Expositions in Mathematics 4 Walter de Gruyter, Berlin (1992). MR 1169099 | Zbl 0753.20001
[6] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics Harper & Row, Publishers, New York (1968). MR 0231903 | Zbl 0185.05701
[7] Guo, X., Lu, J.: On $ss$-supplemented subgroups of finite groups and their properties. Glasg. Math. J. 54 (2012), 481-491. DOI 10.1017/S0017089512000079 | MR 2965394 | Zbl 1256.20018
[8] Guralnick, R. M.: Subgroups of prime power index in a simple group. J. Algebra 81 (1983), 304-311. DOI 10.1016/0021-8693(83)90190-4 | MR 0700286 | Zbl 0515.20011
[9] Hall, P.: A characteristic property of soluble groups. J. Lond. Math. Soc. 12 (1937), 198-200. DOI 10.1112/jlms/s1-12.2.198 | MR 1575073 | Zbl 0016.39204
[10] Hall, P.: Complemented groups. J. Lond. Math. Soc. 12 (1937), 201-204. DOI 10.1112/jlms/s1-12.2.201 | MR 1575074 | Zbl 0016.39301
[11] Heliel, A. A.: A note on $c$-supplemented subgroups of finite groups. Commun. Algebra 42 (2014), 1650-1656. DOI 10.1080/00927872.2012.747599 | MR 3169659
[12] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). MR 0224703 | Zbl 0217.07201
[13] Kegel, O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78 German (1962), 205-221. DOI 10.1007/BF01195169 | MR 0147527 | Zbl 0102.26802
[14] Li, S., Shen, Z., Liu, J., Liu, X.: The influence of $ss$-quasinormality of some subgroups on the structure of finite groups. J. Algebra 319 (2008), 4275-4287. DOI 10.1016/j.jalgebra.2008.01.030 | MR 2407900 | Zbl 1152.20019
[15] Li, Y., Li, B.: On minimal weakly $s$-supplemented subgroups of finite groups. J. Algebra Appl. 10 (2011), 811-820. DOI 10.1142/S021949881100494X | MR 2847499 | Zbl 1237.20020
[16] Lu, J., Guo, X., Li, X.: The influence of minimal subgroups on the structure of finite groups. J. Algebra Appl. 12 (2013), Article No. 1250189, 8 pages. MR 3037264 | Zbl 1270.20020
[17] Schmid, P.: Subgroups permutable with all Sylow subgroups. J. Algebra 207 (1998), 285-293. DOI 10.1006/jabr.1998.7429 | MR 1643106 | Zbl 0910.20015
[18] Wang, Y.: Finite groups with some subgroups of Sylow subgroups $c$-supplemented. J. Algebra 224 (2000), 467-478. DOI 10.1006/jabr.1999.8079 | MR 1739589 | Zbl 0953.20010
Partner of
EuDML logo