Previous |  Up |  Next

Article

Keywords:
weighted composition operator; Zygmund type space; Bloch type space; essential norm
Summary:
Let $u$ be a holomorphic function and $\varphi $ a holomorphic self-map of the open unit disk $\mathbb {D}$ in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators $uC_{\varphi }$ from Zygmund type spaces to Bloch type spaces in $\mathbb {D}$ in terms of $u$, $ \varphi $, their derivatives, and $\varphi ^n$, the $n$-th power of $\varphi $. Moreover, we obtain some similar estimates for the essential norms of the operators $uC_{\varphi }$, from which sufficient and necessary conditions of compactness of $uC_{\varphi }$ follows immediately.
References:
[1] Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic functions. Isr. J. Math. 141 (2004), 263-276. DOI 10.1007/BF02772223 | MR 2063037
[2] Bayart, F.: Parabolic composition operators on the ball. Adv. Math. 223 (2010), 1666-1705. DOI 10.1016/j.aim.2009.10.002 | MR 2592506 | Zbl 1189.47025
[3] Bayart, F.: A class of linear fractional maps of the ball and their composition operators. Adv. Math. 209 (2007), 649-665. DOI 10.1016/j.aim.2006.05.012 | MR 2296311 | Zbl 1112.32002
[4] Bayart, F., Charpentier, S.: Hyperbolic composition operators on the ball. Trans. Am. Math. Soc. 365 (2013), 911-938. DOI 10.1090/S0002-9947-2012-05646-7 | MR 2995378 | Zbl 1269.47023
[5] Bonet, J., Lindström, M., Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions. J. Aust. Math. Soc. 84 (2008), 9-20. DOI 10.1017/S144678870800013X | MR 2469264
[6] Chen, C., Zhou, Z.-H.: Essential norms of the integral-type composition operators between Bloch-type spaces. Integral Transforms Spec. Funct. 25 (2014), 552-561. DOI 10.1080/10652469.2014.887073 | MR 3195940 | Zbl 1297.47024
[7] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics CRC Press, Boca Raton (1995). MR 1397026 | Zbl 0873.47017
[8] Esmaeili, K., Lindström, M.: Weighted composition operators between Zygmund type spaces and their essential norms. Integral Equations Oper. Theory 75 (2013), 473-490. DOI 10.1007/s00020-013-2038-4 | MR 3032664 | Zbl 1306.47036
[9] Fang, Z.-S., Zhou, Z.-H.: New characterizations of the weighted composition operators between Bloch type spaces in the polydisk. Can. Math. Bull. 57 (2014), 794-802. DOI 10.4153/CMB-2013-043-4 | MR 3270799
[10] Fang, Z.-S., Zhou, Z.-H.: Essential norms of composition operators between Bloch type spaces in the polydisk. Arch. Math. 99 (2012), 547-556. DOI 10.1007/s00013-012-0457-0 | MR 3001558 | Zbl 1263.47028
[11] Gorkin, P., MacCluer, B. D.: Essential norms of composition operators. Integral Equations Oper. Theory 48 (2004), 27-40. DOI 10.1007/s00020-002-1203-y | MR 2029942 | Zbl 1065.47027
[12] Hyvärinen, O., Kemppainen, M., Lindström, M., Rautio, A., Saukko, E.: The essential norm of weighted composition operators on weighted Banach spaces of analytic functions. Integral Equations Oper. Theory 72 (2012), 151-157. DOI 10.1007/s00020-011-1919-7 | MR 2872471 | Zbl 1252.47026
[13] Hyvärinen, O., Lindström, M.: Estimates of essential norms of weighted composition operators between Bloch-type spaces. J. Math. Anal. Appl. 393 (2012), 38-44. DOI 10.1016/j.jmaa.2012.03.059 | MR 2921646 | Zbl 1267.47040
[14] Li, S., Stević, S.: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 206 (2008), 825-831. DOI 10.1016/j.amc.2008.10.006 | MR 2483058 | Zbl 1215.47022
[15] Liang, Y.-X., Zhou, Z.-H.: New estimate of essential norm of composition followed by differentiation between Bloch-type spaces. Banach J. Math. Anal. 8 (2014), 118-137. DOI 10.15352/bjma/1381782092 | MR 3161687
[16] Liang, Y.-X., Zhou, Z.-H.: Essential norm of product of differentiation and composition operators between Bloch-type spaces. Arch. Math. 100 (2013), 347-360. DOI 10.1007/s00013-013-0499-y | MR 3044119
[17] Liang, Y.-X., Zhou, Z.-H.: Estimates of essential norms of weighted composition operator from Bloch type spaces to Zygmund type spaces, arXiv:1401.0031v1 [math.FA], 2013. MR 3044119
[18] MacCluer, B. D., Zhao, R.: Essential norms of weighted composition operators between Bloch-type spaces. Rocky Mt. J. Math. 33 (2003), 1437-1458. DOI 10.1216/rmjm/1181075473 | MR 2052498 | Zbl 1061.30023
[19] Manhas, J. S., Zhao, R.: New estimates of essential norms of weighted composition operators between Bloch type spaces. J. Math. Anal. Appl. 389 (2012), 32-47. DOI 10.1016/j.jmaa.2011.11.039 | MR 2876478 | Zbl 1267.47042
[20] Montes-Rodríguez, A.: Weighted composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc., II. Ser. 61 (2000), 872-884. DOI 10.1112/S0024610700008875 | MR 1766111 | Zbl 0959.47016
[21] Shapiro, J. H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics Springer, New York (1993). MR 1237406 | Zbl 0791.30033
[22] Song, X.-J., Zhou, Z.-H.: Differences of weighted composition operators from Bloch space to $H^\infty$ on the unit ball. J. Math. Anal. Appl. 401 (2013), 447-457. DOI 10.1016/j.jmaa.2012.12.030 | MR 3011286 | Zbl 1259.47029
[23] Stević, S.: Essential norms of weighted composition operators from the $\alpha$-Bloch space to a weighted-type space on the unit ball. Abstr. Appl. Anal. 2008 (2008), Article ID 279691, 11 pages. MR 2453144 | Zbl 1160.32011
[24] Stević, S., Chen, R., Zhou, Z.: Weighted composition operators between Bloch-type spaces in the polydisc. Sb. Math. 201 (2010), 289-319 translation from Mat. Sb. 201 (2010), 131-160 Russian. DOI 10.1070/SM2010v201n02ABEH004073 | MR 2656326 | Zbl 1250.47029
[25] Wulan, H., Zheng, D., Zhu, K.: Composition operators on BMOA and the Bloch space. Proc. Am. Math. Soc. 137 (2009), 3861-3868. DOI 10.1090/S0002-9939-09-09961-4 | MR 2529895 | Zbl 1194.47038
[26] Ye, S., Hu, Q.: Weighted composition operators on the Zygmund space. Abstr. Appl. Anal. 2012 (2012), Article ID 462482, 18 pages. MR 2935151 | Zbl 1277.47038
[27] Zeng, H.-G., Zhou, Z. H.: Essential norm estimate of a composition operator between Bloch-type spaces in the unit ball. Rocky Mt. J. Math. 42 (2012), 1049-1071. DOI 10.1216/RMJ-2012-42-3-1049 | MR 2966485 | Zbl 1268.47035
[28] Zhao, R.: Essential norms of composition operators between Bloch type spaces. Proc. Am. Math. Soc. 138 (2010), 2537-2546. DOI 10.1090/S0002-9939-10-10285-8 | MR 2607883 | Zbl 1190.47028
[29] Zhou, Z.-H., Chen, R.-Y.: Weighted composition operators from $F(p, q, s) $ to Bloch type spaces on the unit ball. Int. J. Math. 19 (2008), 899-926. DOI 10.1142/S0129167X08004984 | MR 2446507 | Zbl 1163.47021
[30] Zhou, Z.-H., Liang, Y.-X.: Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball. Czech. Math. J. 62 (2012), 695-708. DOI 10.1007/s10587-012-0040-7 | MR 2984629 | Zbl 1258.47051
[31] Zhou, Z.-H., Liang, Y.-X., Dong, X.-T.: Weighted composition operators between weighted-type space and Hardy space on the unit ball. Ann. Pol. Math. 104 (2012), 309-319. DOI 10.4064/ap104-3-7 | MR 2914538
[32] Zhou, Z., Shi, J.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains. Mich. Math. J. 50 (2002), 381-405. DOI 10.1307/mmj/1028575740 | MR 1914071 | Zbl 1044.47021
[33] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226 Springer, New York (2005). MR 2115155 | Zbl 1067.32005
[34] Zhu, K.: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23 (1993), 1143-1177. DOI 10.1216/rmjm/1181072549 | MR 1245472 | Zbl 0787.30019
[35] Zhu, K.: Operator Theory in Function Spaces. Pure and Applied Mathematics 139 Marcel Dekker, New York (1990). MR 1074007 | Zbl 0706.47019
Partner of
EuDML logo