Previous |  Up |  Next

Article

Keywords:
nondensely operator; neutral differential inclusion; multivalued map; fixed point; controllability; C$_{0}$-semigroup
Summary:
We give sufficient conditions for the existence of integral solutions for a class of neutral functional differential inclusions. The assumptions on the generator are reduced by considering nondensely defined Hille-Yosida operators. Existence and controllability results are established by combining the theory of addmissible multivalued contractions and Frigon's fixed point theorem. These results are applied to a neutral partial differential inclusion with diffusion.
References:
[1] Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differ. Equations 246 (2009), 3834-3863. DOI 10.1016/j.jde.2009.03.004 | MR 2514728 | Zbl 1171.34052
[2] Abada, N., Benchohra, M., Hammouche, H., Ouahab, A.: Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces. Discuss. Math., Differ. Incl. Control Optim. 27 (2007), 329-347. DOI 10.7151/dmdico.1088 | MR 2413817 | Zbl 1145.34047
[3] Adimy, M., Ezzinbi, K.: A class of linear partial neutral functional differential equations with nondense domain. J. Differ. Equations 147 (1998), 285-332. DOI 10.1006/jdeq.1998.3446 | MR 1633941 | Zbl 0915.35109
[4] Adimy, M., Ezzinbi, K.: Existence and linearized stability for partial neutral functional differential equations with nondense domains. Differ. Equ. Dyn. Syst. 7 (1999), 371-417. MR 1862582 | Zbl 0983.34075
[5] Belmekki, M., Benchohra, M., Ezzinbi, K., Ntouyas, S.: Existence results for semilinear perturbed functional differential equations of neutral type with infinite delay. Mediterr. J. Math. 7 (2010), 1-18. DOI 10.1007/s00009-010-0023-6 | MR 2645898 | Zbl 1214.34065
[6] Belmekki, M., Benchohra, M., Górniewicz, L., Ntouyas, S. K.: Existence results for perturbed semilinear functional differential inclusions with infinite delay. Nonlinear Anal. Forum 13 (2008), 135-156. MR 2808070
[7] Belmekki, M., Benchohra, M., Ntouyas, S. K.: Existence results for semilinear perturbed functional differential equations with nondensely defined operators. Fixed Point Theory Appl. 2006 (2006), 13 pages, Article ID 43696. MR 2270321 | Zbl 1150.34592
[8] Benchohra, M., Górniewicz, L., Ntouyas, S. K., Ouahab, A.: Controllability results for nondensely defined semilinear functional differential equations. Z. Anal. Anwend. 25 (2006), 311-325. DOI 10.4171/ZAA/1291 | MR 2251956 | Zbl 1101.93007
[9] Benchohra, M., Ouahab, A.: Controllability results for functional semilinear differential inclusions in Fréchet spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 61 (2005), 405-423. DOI 10.1016/j.na.2004.12.002 | MR 2123084 | Zbl 1086.34062
[10] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580 Springer, Berlin (1977). DOI 10.1007/BFb0087688 | MR 0467310 | Zbl 0346.46038
[11] Prato, G. Da, Sinestrari, E.: Differential operators with non dense domain. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 14 (1987), 285-344. MR 0939631 | Zbl 0652.34069
[12] Frigon, M.: Fixed point results for multivalued contractions on gauge spaces. Set Valued Mappings with Applications in Nonlinear Analysis R. Agarwal et al. Ser. Math. Anal. Appl. 4 Taylor & Francis, London (2002), 175-181. MR 1938847 | Zbl 1013.47013
[13] Hale, J. K.: Partial neutral functional differential equations. Rev. Roum. Math. Pures Appl. 39 (1994), 339-344. MR 1317773 | Zbl 0817.35119
[14] Henderson, J., Ouahab, A.: Existence results for nondensely defined semilinear functional differential inclusions in Fréchet spaces. Electron. J. Qual. Theory Differ. Equ. 2005 (2005), 17 pages. MR 2176192 | Zbl 1111.34045
[15] Hernandez, M. E.: A comment on the papers: Controllability results for functional semilinear differential inclusions in Fréchet spaces and Controllability of impulsive neutral functional differential inclusions with infinite delay. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66 (2007), 2243-2245. MR 2311027 | Zbl 1290.34077
[16] Mahmudov, E. N.: Approximation and Optimization of Discrete and Differential Inclusions. Elsevier Insights Elsevier, Amsterdam (2011). MR 3293164 | Zbl 1235.65002
[17] Mahmudov, E. N., Mastaliyeva, D.: Optimization of neutral functional-differential inclusions. J. Dyn. Control Syst. 21 (2015), 25-46. DOI 10.1007/s10883-014-9215-x | MR 3297939 | Zbl 1317.49033
[18] Mordukhovich, B. S., Wang, L.: Optimal control of neutral functional-differential inclusions. SIAM J. Control Optimization 43 (2004), 111-136. DOI 10.1137/S0363012902420376 | MR 2082695 | Zbl 1208.49031
[19] Wu, J.: Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences 119 Springer, New York (1996). DOI 10.1007/978-1-4612-4050-1 | MR 1415838 | Zbl 0870.35116
[20] Wu, J., Xia, H.: Self-sustained oscillations in a ring array of coupled lossless transmission lines. J. Differ. Equations 124 (1996), 247-278. DOI 10.1006/jdeq.1996.0009 | MR 1368068 | Zbl 0840.34080
[21] Wu, J., Xia, H.: Rotating waves in neutral partial functional differential equations. J. Dyn. Differ. Equations 11 (1999), 209-238. DOI 10.1023/A:1021973228398 | MR 1695243 | Zbl 0939.35188
Partner of
EuDML logo