Previous |  Up |  Next

Article

Keywords:
Riemannian foliation; parallel and harmonic basic forms; O’Neill tensor
Summary:
In this paper, we consider a Riemannian foliation that admits a nontrivial parallel or harmonic basic form. We estimate the norm of the O’Neill tensor in terms of the curvature data of the whole manifold. Some examples are then given.
References:
[1] El Soufi, A., Petit, R.: Géométrie des sous-variétés admettant une structure kählérienne ou un second nombre de Betti non nul. Actes de Congrès de Géométrie d'Oran, 1989, p. 17 pp.
[2] Gromoll, D., Grove, K.: The low dimensional metric foliations of Euclidean spheres. J. Differential Geom. 28 (1988), 143–156. MR 0950559 | Zbl 0683.53030
[3] Grosjean, J.–F.: Minimal submanifolds with a parallel or a harmonic $p$–form. J. Geom. Phys. 51 (2004), 211–228. DOI 10.1016/j.geomphys.2003.10.009 | MR 2078671 | Zbl 1074.53050
[4] Habib, G., Richardson, K: Modified differentials and basic cohomology for Riemannian foliations. J. Geom. Anal. 23 (2013), 1314–1342. DOI 10.1007/s12220-011-9289-6 | MR 3078356 | Zbl 1276.53031
[5] Hobum, K., Tondeur, P.: Riemannian foliations on manifolds with non-negative curvature. Manuscripta Math. 74 (1992), 39–45. DOI 10.1007/BF02567656 | MR 1141775 | Zbl 0763.53036
[6] Leung, P.F.: Minimal submanifolds in a sphere. Math. Z. 183 (1983), 75–86. DOI 10.1007/BF01187216 | MR 0701359 | Zbl 0491.53045
[7] O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459–469. DOI 10.1307/mmj/1028999604 | MR 0200865
[8] Ranjan, A.: On a remark of O’Neill. Duke Math. J. 53 (1981), 363–373. MR 0835797
[9] Reinhart, B.: Foliated manifolds with bundle-like metrics. Ann. of Math. (2) 69 (1959), 119–132. DOI 10.2307/1970097 | MR 0107279 | Zbl 0122.16604
[10] Tondeur, P.: Geometry of Foliations. Birkhäuser, Boston, 1997. MR 1456994 | Zbl 0905.53002
Partner of
EuDML logo