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RIEMANNIAN FOLIATIONS WITH PARALLEL

OR HARMONIC BASIC FORMS

Fida El Chami, Georges Habib, and Roger Nakad

Abstract. In this paper, we consider a Riemannian foliation that admits
a nontrivial parallel or harmonic basic form. We estimate the norm of the
O’Neill tensor in terms of the curvature data of the whole manifold. Some
examples are then given.

1. Introduction

In [3], J. F. Grosjean obtained some non-existence results on minimal submani-
folds carrying parallel or harmonic forms. Indeed, given a Riemannian manifold
(Mm, g) admitting a parallel p-form and let (Nn, h) be a Riemannian manifold
satisfying a certain curvature pinching condition depending on m and p, he proved
that there is no minimal immersion from M into N . His proof is based on compu-
ting the curvature term (which is zero in this case) in the Bochner-Weitzenböck
formula and using the Gauss formula relating the curvatures of M and N . As a
consequence, he deduced various rigidity results when N is the hyperbolic space
Hn, the Riemannian product Hr × Ss or the complex hyperbolic space CHn.

In the same spirit, he proved that for any compact manifold (Mm, g) carrying
a harmonic p-form (or a non-zero pth betti number bp(M)) and isometrically
immersed into a Riemannian manifold (Nn, h), there exists at least a point x of
M so that (see also [1])

m
√
p

(p− 1
p

)
|B(x)||H(x)| ≥ k(x)−

(p− 1
p

)
((m− 1)K̄1 + ρ̄1)(x) ,

and

m
(p− 1
√
p

+ m− p− 1√
m− p

)
|B(x)||H(x)| ≥ ScalM (x)− (m− 2)[(m− 1)K̄1 + ρ̄1](x),

where |B(x)|, H(x), k(x) and ρ̄1(x) denote respectively the norm of the second
fundamental form B, the mean curvature of the immersion, the smallest eigenvalue
of the Ricci curvature of M, the largest eigenvalue of the curvature operator of
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(Nn, h) and K̄1(x) is the largest sectional curvature of N . These inequalities come
from a lower bound of the curvature term (which is non-positive at the point x)
in the Bochner-Weitzenböck formula. Thus, if the manifold (Mm, g) is minimally
immersed into (Nn, h) and satisfying the pinching condition

min
M

(ScalM ) > (m− 2)
(
(m− 1) max

N
(K̄1) + max

N
(ρ̄1)

)
,

then (Mm, g) is a homology sphere (see also [6]).
In this paper, we investigate the study of foliated manifolds that admits a nontri-

vial particular form. In fact, we consider a Riemannian manifold (M, g) equipped
with a Riemannian foliation F , which roughly speaking, is the decomposition of
M into submanifolds (called leaves) given by local Riemannian submersions to a
base manifold. We assume that the manifold M admits a parallel (resp. harmonic)
basic p-form , with respect to the connection defined in Section 2. This corresponds
locally to the existence of such a form on the base manifold of the submersions.
When shifting the study from immersions to submersions, many objects are replaced
by their dual. In particular, the O’Neill tensor [7] plays the role of the second
fundamental form and thus, we aim to estimate the norm of the O’Neill tensor in
terms of different curvature data of the manifold M . The main tool is to use the
transverse Bochner-Weitzenböck formula for foliations [4]. Recall that this tensor
completely determines the geometry of the foliation. Indeed, it vanishes if and only
if the normal bundle of the foliation is integrable.

The paper is organized as follows. In Section 2, we recall some well-known facts
on differential forms and review some preliminaries on Riemannian foliations. In
Section 3, we treat the case where the manifold admits a parallel basic form. We
compute the curvature term in the transverse Bochner-Weitzenböck formula and
relate it to the curvature of the manifold M using the O’Neill formulas. We then
deduce a lower bound estimate for the O’Neill tensor (see Thm. 3.3 for p > 1 and
Cor. 3.2 for a rigidity result when p = 1). In the last section, we study the case
where there exists a harmonic basic form. As before, we deduce a new estimate of
the O’Neill tensor (see Thm. 4.2).

2. Preliminaries

Let (M, g) be a Riemannian manifold of dimension n and ∇M be the Levi-Civita
connection associated with the metric g. In all the paper, we make the following
notations for the curvatures: RM (X,Y ) = ∇M[X,Y ] − [∇MX ,∇MY ] and RMXY ZW =
g(RM (X,Y )Z,W ) for any X,Y, Z,W ∈ Γ(TM). We will denote respectively by
KM

0 (x) and KM
1 (x) the smallest and the largest sectional curvature and by ρM0 (x)

and ρM1 (x) the smallest and largest eigenvalue of the curvature operator ρM (X ∧
Y,Z ∧W ) = g(RM (X,Y )Z,W ) at a point x ∈ M. Thus, we have the following
inequalities

(2.1) ρM0 (x) ≤ KM
0 (x) ≤ KM

1 (x) ≤ ρM1 (x) .
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Now, let us recall some definitions on forms. The inner product of any two p-forms
α and β is defined as

〈α, β〉 = 1
p!

∑
1≤i1,...,ip≤n

α(ei1 , ei2 , . . . , eip)β(ei1 , ei2 , . . . , eip) ,

where {e1, . . . , en} is an orthonormal frame of TM. The interior product of a p-form
α with a vector field X is a (p− 1)-form defined by

(Xyα)(X1, . . . , Xp−1) = α(X,X1, . . . , Xp−1) .

More generally, the interior product of α with s vector fields X1, X2, . . . , Xs is a
(p− s)-form which is defined as the following

((X1 ∧ · · · ∧Xs)yα)(Y1, . . . , Yp−s) = α(Xs, . . . , X1, Y1, . . . , Yp−s) .

As a consequence from the definition, we get the rule Xy(ω ∧ θ) = (Xyω) ∧ θ +
(−1)pω∧ (Xyθ), where p is the degree of ω. If the manifold is orientable, the Hodge
operator ∗ defined on a p-form α satisfies the following property:

(2.2) Xy(∗α) = (−1)p ∗ (X∗ ∧ α) .

Assume now that (Mn, g) is endowed with a Riemannian foliation F of codimension
q. That means F is given by an integrable subbundle L of TM of rank n− q such
that the metric g satisfies the holonomy-invariance condition on the normal vector
bundle Q = TM/L; that is LXg|Q = 0 for all X ∈ Γ(L), where L denotes the Lie
derivative [9]. We call g a bundle-like metric. This latter condition gives rise to a
transverse Levi-Civita connection on Q defined by [10]

∇XY =

π[X,Y ] , if X ∈ Γ(L) ,

π(∇MX Y ) , if X ∈ Γ(Q) ,

where π : TM → Q is the projection. A fundamental property of the connection ∇
is that it is flat along the leaves, that is XyR∇ = 0 for any X ∈ Γ(L). Thus, we
can associate to ∇ all the curvature data such as the transverse Ricci curvature
Ric∇ and transverse scalar curvature Scal∇. A basic form α on M is a differential
form which depends locally on the transverse variables; that is satisfying the rules
Xyα = 0 and Xydα = 0 for any X ∈ Γ(L). It is easy to see that the exterior
derivative d preserves the set of basic forms, and its restriction to this set will be
denoted by db. We let δb the formal adjoint of db with respect to the L2-product.
Then we have

db =
q∑
i=1

ei ∧∇ei , δb = −
q∑
i=1

eiy∇ei + κby ,

where {ei}i=1,...,q is a local orthonormal frame of Q and κb is the basic component

of the mean curvature field of the foliation κ =
n−q∑
s=1

π(∇MVsVs). Here {Vs}s=1,...,n−q

is a local orthonormal frame of L. The basic Laplacian is defined as ∆b = dbδb+δbdb.
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Recall that when the foliation is transversally orientable, the basic Hodge operator
∗b is defined on the set of basic p-forms as being

∗bα = (−1)(n−q)(q−p) ∗ (α ∧ χF ) ,
where χF is the volume form of the leaves. The operator ∗b preserves the basic
forms and satisfies the same property as (2.2). In [4], the authors define a new
twisted exterior derivative d̃b := db − 1

2κb∧ and prove that the associated twisted
Laplacian ∆̃b := d̃bδ̃b+ δ̃bd̃b commutes with the basic Hodge operator. In particular,
this shows that the twisted cohomology group (i.e. the one associated with d̃b)
satisfies the Poincaré duality. Here δ̃b := δb − 1

2κby denotes the L2-adjoint of d̃b.
Moreover, they state the transverse Bochner-Weitzenböck formula for ∆̃b

∆̃bα = ∇∗∇α+ 1
4 |κb|

2α+R(α) ,

where R(α) = −
q∑
j=1

e∗j ∧ (eiyR∇(ei, ej)α). As for ordinary manifolds [3], the scalar

product of R(α) by α gives after the use of the first Bianchi identity that〈
R(α), α

〉
=

∑
1≤i,j≤q

Ric∇ij〈eiyα, ejyα〉

− 1
2

∑
1≤i,j,k,l≤q

R∇ijkl
〈
(ej ∧ ei)yα, (el ∧ ek)yα

〉
.(2.3)

On the other hand, the geometry of a Riemannian foliation can be interpreted in
terms of the so-called the O’Neill tensor [7]. It is a 2-tensor field given for all X,
Y ∈ Γ(TM) by

AXY = π⊥
(
∇Mπ(X)π(Y )

)
+ π

(
∇Mπ(X)π

⊥(Y )
)
,

where π⊥ denotes the projection of TM onto L. By the bundle-like condition,
the O’Neill tensor is a skew-symmetric tensor with respect to the vector fields Y ,
Z ∈ Γ(Q) and it is equal to AY Z = 1

2π
⊥([Y,Z]) and for any V ∈ Γ(L) we have

g(AY V,Z) = −g(V,AY Z). Thus we deduce that the normal bundle is integrable if
and only if the O’Neill tensor vanishes. If moreover the bundle L is totally geodesic,
the foliation is isometric to a local product.

We point out that the curvature of M can be related to the one on the normal
bundle Q via the O’Neill tensor by the formula [7]

(2.4) RMXY ZW = RQXY ZW − 2g(AXY,AZW ) + g(AY Z,AXW ) + g(AZX,AYW ) ,
where X, Y , Z, W are vector fields in Γ(Q). One can easily see by (2.4) that the
norm of the O’Neill tensor |A|2 :=

∑
1≤i≤q

1≤s≤n−q

|AeiVs|2 can be bounded at any point

by
Scal∇ − q(q − 1)KM

1 ≤ 3|A|2 ≤ Scal∇ − q(q − 1)KM
0 .

In particular, if the transversal scalar curvature does not belong to the interval
[q(q − 1)KM

0 , q(q − 1)KM
1 ], the normal bundle cannot be integrable.
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3. Foliations with parallel basic forms

In this section, we discuss the case where a Riemannian manifold endowed with
a Riemannian foliation admits a parallel basic form. That is a basic p-form α
satisfying ∇α = 0.

Proposition 3.1. Let (M, g,F) be a Riemannian manifold with a Riemannian
foliation F of codimension q. Assume that there exists a nontrivial parallel basic
p-form α. Then we have

0 ≤ −
∑

1≤i,j,l≤q
RMlilj〈eiyα, ejyα〉+ 1

2
∑

1≤i,j,k,l≤q
RMijkl〈(ej ∧ ei)yα, (el ∧ ek)yα〉

+
n−q∑
s=1

{∣∣∣ q∑
i=1

(AeiVs ∧ ei)yα
∣∣∣2 − 2

q∑
i=1
|AeiVsyα|2

}
,(3.1)

where {ei}i=1,...,q and {Vs}s=1,...,n−q are local orthonormal frames of Q and L,
respectively.

Proof. From Equation (2.4), we have the following formulas
R∇ijkl = RMijkl + 2g(Aeiej , Aekel)− g(Aejek, Aeiel)− g(Aekei, Aejel),(3.2)

and that,

Ric∇ij =
q∑
l=1

{
RMlilj + 2g(Aelei, Aelej)− g(Aeiel, Aelej)− g(Aelel, Aeiej)

}
.(3.3)

The existence of a parallel basic form α implies that 〈R(α), α〉 = 0. Thus plugging
these last two equations into (2.3), we get that

0 =
∑

1≤i,j,l≤q
RMlilj〈eiyα, ejyα〉+ 3g(Aelei, Aelej)〈eiyα, ejyα〉

×
∑

1≤i,j,k,l≤q

{
− 1

2R
M
ijkl

〈
(ej ∧ ei)yα, (el ∧ ek)yα〉

− g(Aeiej , Aekel)〈(ej ∧ ei)yα, (el ∧ ek)yα
〉

+ 1
2g(Aejek, Aeiel)

〈
(ej ∧ ei)yα, el ∧ ekyα

〉
+ 1

2g(Aekei, Aejel)
〈
(ej ∧ ei)yα, (el ∧ ek)yα

〉}
.(3.4)

The last two summations in the above equality are in fact equal. Indeed, using
that the O’Neill tensor is antisymmetric, we find∑

1≤i,j,k,l≤q
g(Aekei, Aejel)

〈
(ej ∧ ei)yα, (el ∧ ek)yα

〉
= −

∑
1≤i,j,k,l≤q

g(Aeiek, Aejel)
〈
(ej ∧ ei)yα, (el ∧ ek)yα

〉
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= −
∑

1≤i,j,k,l≤q
g(Aeiel, Aejek)

〈
(ej ∧ ei)yα, (ek ∧ el)yα

〉
=

∑
1≤i,j,k,l≤q

g(Aeiel, Aejek)
〈
(ej ∧ ei)yα, (el ∧ ek)yα

〉
.

On the other hand, we have∑
1≤i,j,k,l≤q

g(Aeiej , Aekel)
〈
(ej ∧ ei)yα, (el ∧ ek)yα

〉
=

∑
1≤i,j,k,l≤q
1≤s≤n−q

g(Aeiej , Vs)g(Aekel, Vs)
〈
(ej ∧ ei)yα, (el ∧ ek)yα

〉

=
∑

1≤i,j,k,l≤q
1≤s≤n−q

g(AeiVs, ej)g(AekVs, el)
〈
(ej ∧ ei)yα, (el ∧ ek)yα

〉

=
n−q∑
s=1

〈( q∑
i=1

(AeiVs ∧ ei)
)
yα,

( q∑
k=1

(AekVs ∧ ek)
)
yα
〉

=
n−q∑
s=1

∣∣∣( q∑
i=1

(AeiVs ∧ ei)
)
yα
∣∣∣2 .(3.5)

Also we have that∑
1≤i,j,l≤q

g(Aelei, Aelej)〈eiyα, ejyα〉 =
∑

1≤i,j,l≤q
1≤s≤n−q

g(Aelei, Vs)g(Aelej , Vs)〈eiyα, ejyα〉

=
∑

1≤i,j,l≤q
1≤s≤n−q

g(AelVs, ei)g(AelVs, ej)〈eiyα, ejyα〉

=
∑

1≤l≤q
1≤s≤n−q

〈AelVsyα,AelVsyα〉 =
∑

1≤l≤q
1≤s≤n−q

|AelVsyα|2 .(3.6)

In order to estimate the last term in (3.4), we introduce the p-tensor

B+(α)(X1, . . . , Xp) =
q∑
i=1

(eiyα ∧Aei)(X1, . . . , Xp) ,

for any X1, . . . , Xp ∈ Γ(Q). We now proceed the computation as in [3]. The norm
of the tensor B+(α) is equal to

|B+(α)|2 = 1
p!

∑
1≤i1,...,ip,i,j≤q

〈
(eiyα ∧Aei)i1,...,ip , (ejyα ∧Aej )i1,...,ip

〉
= 1
p!

∑
1≤i1,...,ip,i,j≤q

r,t

(−1)r+tg(Aeieir , Aejeit)αii1,...,̂ir,...,ipαji1,...,̂it,...,ip



RIEMANNIAN FOLIATIONS WITH PARALLEL OR HARMONIC BASIC FORMS 57

= 1
p!

∑
1≤i1,...,ip,i,j≤q

r=t

g(Aeieir , Aejeir )αii1,...,̂ir,...,ipαji1,...,̂ir,...,ip

+ 1
p!

∑
1≤i1,...,ip,i,j≤q

r<t

(−1)r+tg(Aeieir , Aejeit)αii1,...,̂ir,...,ipαji1,...,̂it,...,ip

+ 1
p!

∑
1≤i1,··· ,ip,i,j≤q

r>t

(−1)r+tg(Aeieir , Aejeit)αii1,...,̂ir,...,ipαji1,...,̂it,...,ip

= 1
(p− 1)!

∑
1≤i1,...,ip−1,i,j,k≤q

g(Aeiek, Aejek)αii1,...,ip−1αji1,...,ip−1

− 2
p!

∑
1≤i1,...,ip,i,j≤q

r<t

g(Aeieir , Aejeit)αiiti1,...,̂ir,...,̂it,...,ipαjiri1,...,̂ir,...,̂it,...,ip .

Since we can choose p(p−1)
2 numbers r, t with r < t from the set {1, · · · , p}, the

last equality can be reduced to

|B+(α)|2 = 1
(p− 1)!

∑
1≤i1,··· ,ip−1,i,j,k≤q

g(Aeiek, Aejek)αii1,...,ip−1αji1,...,ip−1

− 1
(p− 2)!

∑
1≤i1,...,ip−2,i,j,k,l≤q

g(Aeiek, Aejel)αili1,...,ip−2αjki1,...,ip−2

=
∑

1≤i,j,k≤q
g(Aeiek, Aejek)〈eiyα, ejyα〉

−
∑

1≤i,j,k,l≤q
g(Aeiek, Aejel)

〈
(el ∧ ei)yα, (ek ∧ ej)yα

〉
=

∑
1≤i,j,k≤q

g(Aekei, Aekej)〈eiyα, ejyα〉

+
∑

1≤i,j,k,l≤q
g(Aeiel, Aejek)〈(ej ∧ ei)yα, (el ∧ ek)yα〉 .(3.7)

Returning back to the Equation (3.4) and after plugging Equations (3.5), (3.6) and
(3.7), we get the following

0 =
∑

1≤i,j,l≤q
RMlilj〈eiyα, ejyα〉 −

1
2

∑
1≤i,j,k,l≤q

RMijkl
〈
(ej ∧ ei)yα, (el ∧ ek)yα

〉
+ |B+(α)|2 + 2

∑
1≤l≤q

1≤s≤n−q

|AelVsyα|2 −
n−q∑
s=1

∣∣∣( q∑
i=1

(AeiVs ∧ ei)
)
yα
∣∣∣2 .

Finally using the fact that |B+(α)|2 ≥ 0, we deduce the desired inequality. 2
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For p = 1, we find by (3.1) that the lowest sectional curvature KM
0 should be

non-positive. Hence we have

Corollary 3.2. Let (M, g,F) be a Riemannian manifold with positive sectional
curvature and endowed with a Riemannian foliation F . Then M does not admit a
parallel basic 1-form.

In the following, we will treat the case p ≥ 2. For that, we aim to estimate
each term in inequality (3.1). As in [3], we define the basic 2-form θi1,...,ip−2 =
1
2

∑
1≤i,j≤q

αiji1,...,ip−2ei∧ej . Thus the second term of inequality (3.1) can be bounded

from above by
1
2

∑
1≤i,j,k,l≤q

RMijkl
〈
(ej ∧ ei)yα, (el ∧ ek)yα

〉
= 2

(p− 2)!
∑

1≤i1,··· ,ip−2≤q

ρM (θi1,...,ip−2 , θi1,...,ip−2)

≤ 2
(p− 2)!ρ

M
1

∑
1≤i1,...,ip−2≤q

|θi1,...,ip−2 |2 = p(p− 1)ρM1 |α|2 .(3.8)

Using the Cauchy-Schwarz inequality and the fact that |v ∧wyα| ≤ |v| |wyα| for
any vectors v, w, the last term in (3.1) is bounded by

(3.9)
∣∣∣ q∑
i=1

(AeiVs ∧ ei)yα
∣∣∣2 ≤ q q∑

i=1
|(AeiVs ∧ ei)yα|2 ≤ q

q∑
i=1
|AeiVsyα|2 .

Now we state our main result:

Theorem 3.3. Let (M, g,F) be a Riemannian manifold with a Riemannian folia-
tion F of codimension q ≥ 4. Assume that the manifold admits a nontrivial parallel
basic p-form α with 2 ≤ p ≤ q − 2. Then we have

(q − 2)|A|2 ≥ KM
0 q(q − 1)−

(
p(p− 1) + (q − p)(q − p− 1)

)
ρM1 .

Proof. Plugging the estimates in (3.8) and (3.9) into inequality (3.1), we get that

0 ≤−
∑

1≤i,j,l≤q
RMlilj〈eiyα, ejyα〉+ p(p− 1)ρM1 |α|2

+ (q − 2)
∑

1≤i≤q
1≤s≤n−q

|AeiVsyα|2 .(3.10)

Since α is a parallel basic p-form, the (q−p)-form ∗bα is also parallel. Thus replacing
α by ∗bα in (3.10), we find the inequality

0 ≤ −
∑

1≤i,j,l≤q
RMlilj

〈
eiy(∗bα), ejy(∗bα)

〉
+ (q − p)(q − p− 1)ρM1 |α|2

+ (q − 2)
∑

1≤i≤q
1≤s≤n−q

|AeiVs ∧ α|2 .(3.11)



RIEMANNIAN FOLIATIONS WITH PARALLEL OR HARMONIC BASIC FORMS 59

In the last term of (3.11), we use the equality 2.2 for the basic Hodge operator.
Now the sum of inequalities (3.10) and (3.11) gives the desired inequality after the
use of∑

1≤i,j,l≤q
RMlilj

(
〈eiyα, ejyα〉+ 〈eiy(∗bα), ejy(∗bα)〉

)
=

∑
1≤i,j,l≤q

RMlilj
(
〈eiyα, ejyα〉+ 〈ei ∧ α, ej ∧ α〉

)
=

∑
1≤i,j,l≤q

RMlilj
(
〈eiyα, ejyα〉+ 〈ejy(ei ∧ α), α〉

)
=

∑
1≤i,j,l≤q

RMlilj
(
〈eiyα, ejyα〉+ δij |α|2 − 〈eiyα, ejyα〉

)
=

∑
1≤i,l≤q

RMlili|α|2 ,(3.12)

which is greater than KM
0 q(q − 1)|α|2. �

We point out that the theorem is of interest only if

KM
0 q(q − 1)−

(
p(p− 1) + (q − p)(q − p− 1)

)
ρM1 > 0 ,

which means by (2.1) that the manifold M is of positive sectional curvature.

Example. Let us consider the round sphere S2m−1 equiped with the standard
metric of constant curvature 1. We denote by F the 1-dimensional Riemannian
fibers given by the action [2]

e2iπt(z1, . . . , zm) = (e2iπθ1tz1, e
2iπθ2tz2, . . . , e

2iπθmtzm) ,

with 0 < θ1 ≤ θ2 ≤ · · · ≤ θm ≤ 1. These foliations are Seifert fibrations (i.e.
the fibers are compact) if and only if all θ′is are rational and the Hopf fibration
corresponds to the case where θ1 = θ2 = · · · = θm = 1. In the following, we will
compute the O’Neill tensor of the foliation F and study the optimality of the
estimate in Theorem 3.3. Without loss of generality, we can assume that θ1 = 1.
The vector X that generates F is given by

X = (iz1, iθ2z2, . . . , iθmzm) .

For an integer l ∈ {1, . . . ,m− 1} and p ∈ {1, . . . ,m− 2}, we define the vector fields
Yl and Wp on the tangent space of S2m−1 by the following [5]

Yl = (0, . . . , 0,−(
m∑

k=l+1
|zk|2)zl, |zl|2zl+1, . . . , |zl|2zm) ,

and,

Wp = (0, . . . , 0,−(
m∑

k=p+1
θ2
k|zk|2)izp, θpθp+1|zp|2izp+1, . . . , θpθm|zp|2izm) .
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We also denote by Wm−1 the vector field on TS2m−1 by

Wm−1 = (0, . . . , 0,−θm|zm|2izm−1, θm−1|zm−1|2izm) .

It is easy to see that the set {X,Yl,Wp,Wm−1} is an orthogonal frame of the tangent
space of the sphere for any l and p. Recall now that given an orthonormal frame
{X/|X|, ei = Zi/|Zi|} of the tangent space of the round sphere for i = 1, . . . , 2m−2,
the norm of O’Neill tensor can be computed as follows

|A|2 =
∑
i,j

|Aeiej |2 = 1
4
∑
i,j

|π⊥([ei, ej ])|2 = 1
2|X|2

∑
i<j

1
|Zi|2|Zj |2

|([Zi, Zj ], X)|2 ,

where π⊥ : TM → RX is the projection. On the one hand, a straightforward
computation of the norms yields to

|X|2 = |z1|2 +
m∑
k=2

θ2
k|zk|2 .

Moreover, for any l and p, we have

|Yl|2 = |zl|2
( m∑
k=l+1

|zk|2
)( m∑

k=l
|zk|2

)
,

|Wp|2 = |zp|2
( m∑
t=p+1

θ2
t |zt|2

)( m∑
s=p

θ2
s |zs|2

)
.

Also we find that,
|Wm−1|2 = (θ2

m|zm|2 + θ2
m−1|zm−1|2)|zm|2|zm−1|2 .

On the other hand, the computation of the Lie brackets yields for any l to

([Yl,Wl], X) = −2θl|zl|2
( m∑
s=l+1

θ2
s |zs|2

)( m∑
k=l
|zk|2

)
,

and for l > p, (
[Yl,Wp], X

)
= 2|zl|2θp|zp|2

m∑
k=l+1

(θ2
l − θ2

k)|zk|2 .

Also, we have that(
[Ym−1,Wm−1], X

)
= −2|zm−1|2|zm|2θm−1θm

(
|zm−1|2 + |zm|2

)
.

The other Lie brackets are all equal to zero. Thus the O’Neill tensor is equal to

|A|2 = 2
|X|2

{θ2
m−1θ

2
m(|zm−1|2 + |zm|2)

θ2
m−1|zm−1|2 + θ2

m|zm|2) +
m−2∑
j=1

θ2
j (
∑m
s=j+1 θ

2
s |zs|2)(

∑m
k=j |zk|2)

(
∑m
s=j θ

2
s |zs|2)(

∑m
k=j+1 |zk|2)

+
m−2∑
j=1

m−1∑
i=j+1

|zi|2|zj |2(
∑m
k=i+1(θ2

i − θ2
k)|zk|2)2

(
∑m
t=j+1 θ

2
t |zt|2)(

∑m
s=j θ

2
s |zs|2)(

∑m
k=i+1 |zk|2)(

∑m
k=i |zk|2)

}
.
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We will now prove that the norm is constant if only if all θ′is are equal to 1.
Indeed, if we evaluate this norm when it corresponds to the cases where |zm| → 1,
|zi| → 0 i 6= m and |zm−1| → 1, |zi| → 0, i 6= m − 1, we find after identifying
that θm−1 = θm = θ. The value of the O’Neill tensor corresponding to the case
|z1|2 = |zm|2 → 1

2 , |zi| → 0, 2 ≤ i ≤ m− 1 gives that θ = 1. The same computation
can be done successively to prove that θ′is are equal to one for i 6= m,m− 1 when
considering the case |zl|2 = |zm|2 → 1

2 , |zi| → 0. Comparing the lower bound of
the inequality in Theorem 3.3 with the norm of the O’Neill tensor which is equal
to 2(m− 1), we find that the optimality is realized for S5.

Next, we will get another pinching condition which doesn’t require the positivity
of the sectional curvature. We have

Theorem 3.4. Under the same condition as in Theorem 3.3, we have
(q − 2)|A|2 ≥ ScalM −KM

1 (n− q)(n+ q − 1)− (p(p− 1) + (q − p)(q − p− 1))ρM1 .

Proof. The proof is a direct consequence from the fact that∑
1≤i,l≤q

RMlili ≥ ScalM −KM
1 (n− q)(n+ q − 1) .

�

The inequality in Theorem 3.4 is of interest if
KM

1 (n− q)(n+ q − 1) + (p(p− 1) + (q − p)(q − p− 1))ρM1 ≤ ScalM

which with the use of ScalM ≤ KM
1 n(n− 1) gives that KM

1 > 0.

Remark 1. The computations in Proposition 3.1, Theorems 3.3 and 3.4 are local.
Therefore, if there is one point at which the estimates do not hold, then there is no
locally defined parallel p-form for any Riemannian foliation near that point.

4. Foliations with harmonic basic forms

In this section, we study the case where a Riemannian manifold endowed with a
Riemannian foliation admits a basic harmonic form. That is a basic p-form α such
that ∆bα = 0.

Proposition 4.1. Let (M, g,F) be a Riemannian manifold endowing with a Rie-
mannian foliation. Then, we have

2〈R(α), α〉 ≥ −p− 7
3

∑
1≤i,j≤q

Ric∇ij〈eiyα, ejyα〉+ p− 1
3

∑
1≤i,j,l≤q

RMlilj〈eiyα, ejyα〉

−
∑

1≤i,j,k,l≤q
RMijkl〈(ej ∧ ei)yα, (el ∧ ek)yα〉

−
n−q∑
s=1

{ q∑
i=1
|AeiVsyα|2 + 2|

q∑
i=1

(AeiVs ∧ ei)yα|2
}
,(4.1)

for any basic p-form α.
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Proof. For p = 1, the inequality is clearly satisfied by (2.3). In order to prove the
inequality for p ≥ 2, we introduce as in [3] the operator

B−α = 1
(p− 2)!

∑
i,i1,...,ip−2

(
(ei ∧ ei1 ∧ · · · ∧ eip−2)yα ∧Aei

)
⊗ e∗i1 ∧ · · · ∧ e

∗
ip−2

.

The norm of the tensor B−α is being defined as the sum

|B−α|2 = 1
(p− 2)!

∑
k,l,i1,...,ip−2

|(B−α)kli1...ip−2 |2 .

Therefore, we compute
(p− 2)!

2 |B−α|2 = 1
2

∑
k,l,i1,...,ip−2

|(B−α)kli1···ip−2 |2

= 1
2

∑
i1,...,ip−2
i,j,k,l

〈
((ei ∧ ei1 ∧ · · · ∧ eip−2)yα ∧Aei)kl, ((ej ∧ ei1 ∧ · · · ∧ eip−2)yα ∧Aej )kl

〉

= 1
2

∑
i1,...,ip−2
i,j,k,l

〈αii1...ip−2kAeiel − αii1···ip−2lAeiek, αji1...ip−2kAejel − αji1...ip−2lAejek〉

=
∑

i1,...,ip−2
i,j,k,l

αiki1...ip−2αjki1...ip−2g(Aeiel, Aejel)− αiki1···ip−2αjli1...ip−2g(Aeiel, Aejek)

= (p− 1)!
∑

1≤i,j,l≤q
〈eiyα, ejyα〉g(Aeiel, Aejel)

− (p− 2)!
∑

1≤i,j,k,l≤q

〈
(ek ∧ ei)yα, (el ∧ ej)yα

〉
g(Aeiel, Aejek) .

Thus we deduce that
1
2 |B
−α|2 = (p− 1)

∑
1≤i,j,l≤q

〈eiyα, ejyα〉g(Aeiel, Aejel)

−
∑

1≤i,j,k,l≤q
〈(ej ∧ ei)yα, (el ∧ ek)yα〉g(Aeiel, Aekej) .

Plugging now Equations (3.2) and (3.3) into the above one, we find that
1
2 |B
−α|2 = p− 1

3

{ ∑
1≤i,j≤q

Ric∇ij〈eiyα, ejyα〉 −
∑

1≤i,j,l≤q
RMlilj〈eiyα, ejyα〉

}
+

∑
1≤i,j,k,l≤q

{
−R∇ijkl +RMijkl + 2g(Aeiej , Aekel)
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− g(Aekei, Aejel)
}〈

(ej ∧ ei)yα, (el ∧ ek)yα
〉

= p− 1
3

{ ∑
1≤i,j≤q

Ric∇ij〈eiyα, ejyα〉 −
∑

1≤i,j,l≤q
RMlilj〈eiyα, ejyα〉

}
+ 2〈R(α), α〉 − 2

∑
1≤i,j≤q

Ric∇ij〈eiyα, ejyα〉

+
∑

1≤i,j,k,l≤q
RMijkl〈(ej ∧ ei)yα, (el ∧ ek)yα〉

+ 2
n−q∑
s=1
|(

q∑
i=1

(AeiVs ∧ ei))yα|2

−
∑

1≤i,j,k,l≤q
g(Aekei, Aejel)〈(ej ∧ ei)yα, (el ∧ ek)yα〉 .

We used in the last equality Equations (2.3) and (3.5). Interchanging now the
indice k to l and vice versa in the last expression, we get
1
2 |B
−α|2 = p− 1

3

{ ∑
1≤i,j≤q

Ric∇ij〈eiyα, ejyα〉 −
∑

1≤i,j,l≤q
RMlilj〈eiyα, ejyα〉

}
+ 2〈R(α), α〉 − 2

∑
1≤i,j≤q

Ric∇ij〈eiyα, ejyα〉+
∑

1≤i,j,k,l≤q
RMijkl〈(ej ∧ ei)yα, (el ∧ ek)yα〉

+ 2
n−q∑
s=1

∣∣∣( q∑
i=1

(AeiVs ∧ ei)
)
yα
∣∣∣2−∑
1≤i,j,k,l≤q

g(Aeiel, Aejek)〈(ej ∧ ei)yα, (el ∧ ek)yα〉 .

Finally, after the use of Equation (3.7), we find with the help of (3.6) that
1
2 |B
−α|2 + |B+α|2 = p− 7

3
∑

1≤i,j≤q
Ric∇ij〈eiyα, ejyα〉 −

p− 1
3

∑
1≤i,j,l≤q

RMlilj〈eiyα, ejyα〉

+ 2〈R(α), α〉+
∑

1≤i,j,k,l≤q
RMijkl〈(ej ∧ ei)yα, (el ∧ ek)yα〉

+
n−q∑
s=1

{ q∑
i=1
|AeiVsyα|2 + 2

∣∣∣( q∑
i=1

(AeiVs ∧ ei)
)
yα
∣∣∣2}.

Since the l.h.s. of the equality above is non-negative, we finish the proof of the
proposition. 2

We now investigate the case where the form α is a harmonic basic form. We
have

Theorem 4.2. Let (M, g,F) be a compact Riemannian manifold endowed with
a Riemannian foliation of codimension q. Assume that the manifold admits a
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harmonic basic p-form, there exists at least a point x ∈M such that

(2q + 1)|A|2(x) ≥ − p− 7
3 Scal∇(x) +

(p− 1
3

)
q(q − 1)KM

0 (x)

− 2
(
p (p− 1) + (q − p)(q − p− 1)

)
ρM1 (x) ,

where 2 ≤ p ≤ q − 2.

Proof. As in the proof of Theorem 3.3, we use Inequality (3.9) in order to deduce
that

2
〈
R(α), α

〉
≥ −p− 7

3
∑

1≤i,j≤q
Ric∇ij〈eiyα, ejyα〉+ p− 1

3
∑

1≤i,j,l≤q
RMlilj〈eiyα, ejyα〉

−
∑

1≤i,j,k,l≤q
RMijkl

〈
(ej ∧ ei)yα, (el ∧ ek)yα

〉
− (2q + 1)

∑
1≤i≤q

1≤s≤n−q

|AeiVsyα|2

for any basic p-form α. Applying the above inequality for the (q− p)-form ∗bα and
then summing the two equations, we get by using (3.12) and (3.8)

2
(
〈R(α), α〉+ 〈R(∗bα), ∗bα〉

)
≥ −p− 7

3 Scal∇|α|2 + p− 1
3 q(q − 1)KM

0 |α|2

− 2
(
p (p− 1) + (q − p)(q − p− 1)

)
ρM1 |α|2

− (2q + 1)|A|2|α|2 .
If the basic form α is now harmonic, i.e. dbα = δbα = 0, then the twisted derivative
is equal to d̃bα = − 1

2κ ∧ α and its adjoint is δ̃bα = − 1
2κyα. Thus∫

M

〈∆̃bα, α〉vg =
∫
M

(|d̃bα|2 + |δ̃bα|2)vg = 1
4

∫
M

|κ|2|α|2vg .

This implies by the transverse Bochner-Weitzenböck formula, that
∫
M
〈R(α), α〉vg ≤

0. Since the basic Hodge operator commutes with the twisted Laplacian [4], the
same inequality holds for ∗bα. Thus, we get the required inequality. �
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