[1] Bonami, A., Demange, B., Jaming, P.:
Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoam. 19 (2003), 23-55.
DOI 10.4171/RMI/337 |
MR 1993414
[9] Gröchenig, K.:
Uncertainty principles for time-frequency representations. Advances in Gabor Analysis H. G. Feichtinger et al. Applied and Numerical Harmonic Analysis Birkhäuser, Basel (2003), 11-30.
MR 1955930 |
Zbl 1039.42004
[10] Havin, V., Jöricke, B.:
The Uncertainty Principle in Harmonic Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. 28 Springer, Berlin (1994).
MR 1303780
[11] Hogan, J. A., Lakey, J. D.:
Time-Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling. Applied and Numerical Harmonic Analysis Birkhäuser, Boston (2005).
MR 2107799 |
Zbl 1079.42027
[18] Shimeno, N.:
A note on the uncertainty principle for the Dunkl transform. J. Math. Sci., Tokyo 8 (2001), 33-42.
MR 1818904 |
Zbl 0976.33015
[19] Wilczok, E.:
New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Doc. Math., J. DMV (electronic) 5 (2000), 201-226.
MR 1758876 |
Zbl 0947.42024