[3] Dilcher, K., Skula, L.:
A new criterion for the first case of Fermat's last theorem. Math. Comp. 64 (1995), 363-392.
MR 1248969 |
Zbl 0817.11022
[4] Dilcher, K., Skula, L., Slavutsky, I. Sh.:
Bernoulli Numbers. Bibliography (1713-1990). Queen's papers in Pure and Applied Mathematics 87 Queen's University, Kingston (1991), updated on-line version: www.mathstat.dal.ca/ {dilcher/bernoulli.html}.
MR 1119305
[5] Glaisher, J. W. L.: Congruences relating to the sums of products of the first $n$ numbers and to other sums of products. Quart. J. 31 (1900), 1-35.
[6] Glaisher, J. W. L.: On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus $p^2$ or $p^3$. Quart. J. 31 (1900), 321-353.
[7] Granville, A.:
Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. J. Borwein, et al. Organic Mathematics Proc. of the workshop. Burnaby, 1995. CMS Conf. Proc. 20, American Mathematical Society, Providence (1997), 253-276.
MR 1483922 |
Zbl 0903.11005
[8] Hardy, G. H., Wright, E. M.:
An Introduction to the Theory of Numbers. Clarendon Press Oxford (1979).
MR 0568909 |
Zbl 0423.10001
[10] Ireland, K., Rosen, M.:
A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84 Springer, New York (1982).
MR 0661047 |
Zbl 0482.10001
[12] Jakubec, S.:
Note on the congruences $2^{p-1}\equiv 1\pmod {p^2}$, $3^{p-1}\equiv 1\pmod {p^2}$, $5^{p-1}\equiv 1\pmod {p^2}$. Acta Math. Inform. Univ. Ostrav. 6 (1998), 115-120.
MR 1822520 |
Zbl 1024.11002
[14] Kummer, E. E.: Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen. J. Reine Angew. Math. 41 (1851), 368-372 German.
[15] Lehmer, E.:
On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math. (2) 39 (1938), 350-360.
MR 1503412 |
Zbl 0019.00505
[18] Meštrović, R.:
On the mod $p^7$ determination of ${2p-1\choose p-1}$. Rocky Mt. J. Math. 44 (2014), 633-648; preprint arXiv:1108.1174v1 [math.NT] (2011) .
MR 3240517
[19] Meštrović, R.: Wolstenholme's theorem: its generalizations and extensions in the last hundred and fifty years (1862-2012). preprint arXiv:1111.3057v2 [math.NT] (2011).
[22] Skula, L.:
Fermat's last theorem and the Fermat quotients. Comment. Math. Univ. St. Pauli 41 (1992), 35-54.
MR 1166223 |
Zbl 0753.11016
[23] Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Pure Appl. Math. 5 (1862), 35-39.