[1] Aghababa, M. P., Aghababa, H. P.:
A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dyn. 69 (2012), 1903-1914.
DOI 10.1007/s11071-012-0395-1 |
MR 2945528 |
Zbl 1263.93111
[2] Aghababa, M. P., Aghababa, H. P.:
A novel finite-time sliding mode controller for synchronization of chaotic systems with input nonlinearity. Arab. J. Sci. Eng. 38 (2013), 3221-3232.
DOI 10.1007/s13369-012-0459-z |
MR 3116110
[3] Aghababa, M. P., Khanmohammadi, S., Alizadeh, G.:
Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35 (2011), 3080-3091.
DOI 10.1016/j.apm.2010.12.020 |
MR 2776263 |
Zbl 1219.93023
[4] Alvarez, G., Hernández, L., Muñoz, J., Montoya, F., Li, S. J.:
Security analysis of communication system based on the synchronization of different order chaotic systems. Phys. Lett. A 345 (2005), 245-250.
DOI 10.1016/j.physleta.2005.07.083
[5] Argenti, F., DeAngeli, A., DelRe, E., Genesio, R., Pagni, P., Tesi, A.:
Secure communications based on discrete time chaotic systems. Kybernetika 33 (1997), 41-50.
MR 1486295
[6] Beran, Z.:
On characterization of the solution set in case of generalized semiflow. Kybernetika 45 (2009), 701-715.
MR 2599107 |
Zbl 1190.93036
[7] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S.:
The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-101.
DOI 10.1016/s0370-1573(02)00137-0 |
MR 1913567 |
Zbl 0995.37022
[8] Cai, N., Li, W. Q., Jing, Y. W.:
Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dyn. 64 (2011), 385-393.
DOI 10.1007/s11071-010-9869-1 |
MR 2803218
[10] Čelikovský, S.:
Observer form of the hyperbolic-type generalized Lorenz system and its use for chaos synchronization. Kybernetika 40 (2004), 649-664.
MR 2120388 |
Zbl 1249.93090
[13] Ding, K., Han, Q. L.:
Master-slave synchronization criteria for horizontal platform systems using time delay feedback control. J. Sound Vibration 330 (2011), 2419-2436.
DOI 10.1016/j.jsv.2010.12.006
[14] Ding, K., Han, Q. L.:
Master-slave synchronization of nonautonomous chaotic systems and its application to rotating pendulums. Int. J. Bifur. Chaos 22 (2012), 1250147.
DOI 10.1142/s0218127412501477 |
Zbl 1270.34149
[15] Enjieu, K. H. G., Chabi, O. J. B., Woafo, P.:
Synchronization dynamics in a ring of four mutually coupled biological systems. Commun. Nonlinear Sci. Numer. Simul. 13 (2008), 1361-1372.
DOI 10.1016/j.cnsns.2006.11.004 |
MR 2369467
[16] Grosu, I., Padmanabanm, E., Roy, P. K., Dana, S. K.:
Designing coupling for synchronization and amplification of chaos. Phys. Rev. Lett. 100 (2008), 234102.
DOI 10.1103/physrevlett.100.234102
[18] He, W. L., Du, W. L., Qian, F., Cao, J. D.:
Synchronization analysis of heterogeneous dynamical networks. Neurocomputing 104 (2013), 146-154.
DOI 10.1016/j.neucom.2012.10.008
[19] He, W. L., Qian, F., Han, Q. L., Cao, J. D.:
Synchronization error estimation and controller design for delayed Lur'e systems with parameter mismatches. IEEE Trans. Neur. Net. Lear. Systems 23 (2012), 1551-1563.
DOI 10.1109/tnnls.2012.2205941
[20] Henrion, D.:
Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems. Kybernetika 48 (2012), 1089-1099.
MR 3052875 |
Zbl 1255.37002
[21] Huang, D. B.:
Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E 71 (2005), 037203.
DOI 10.1103/physreve.71.037203
[24] Li, H. Y., Hu, Y. A., Wang, R. Q.:
Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties. Kybernetika 49 (2013), 554-567.
MR 3117914
[28] Lynnyk, V., Čelikovský, S.:
On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption. Kybernetika 46 (2010), 1-18.
MR 2666891 |
Zbl 1190.93038
[29] Mao, X.:
Stochastic Differential Equations and Applications. Horwood 1997.
Zbl 1138.60005
[30] Ottino, J. M., Muzzio, F. J., Tjahjadi, M., Franjione, J. G., Jana, S. C., Kusch, H. A.:
Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing process. Science 257 (1992), 754-760.
DOI 10.1126/science.257.5071.754
[32] Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., Ditto, W. L.:
Controlling chaos in the brain. Nature 370 (1994), 615-620.
DOI 10.1038/370615a0
[34] Ma, J., Zhang, A.H., Xia, Y.F., Zhang, L.:
Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215 (2010), 3318-3326.
DOI 10.1016/j.amc.2009.10.020 |
MR 2576820