Previous |  Up |  Next

Article

Keywords:
nonlinear control system; state and output transformations; observer form; differential one-form
Summary:
Necessary and sufficient conditions are given for the existence of state and output transformations, that bring single-input single-output nonlinear state equations into the observer form. The conditions are formulated in terms of differential one-forms, associated with an input-output equation of the system. An algorithm for transformation of the state equations into the observer form is presented and illustrated by an example.
References:
[1] Besançon, G.: On output transformations for state linearization up to output injection. IEEE Trans. Automat. Control 44 (1999), 10, 1975-1981. DOI 10.1109/9.793789 | MR 1716168 | Zbl 0956.93010
[2] Bestle, D., Zeitz, M.: Canonical form observer design for non-linear time-variable systems. Int. J. Control 38 (1983), 2, 419-431. DOI 10.1080/00207178308933084
[3] Boutat, D., Benali, A., Hammouri, H., Busawon, K.: New algorithm for observer error linearization with a diffeomorphism on the outputs. Automatica 45 (2009), 10, 2187-2193. DOI 10.1016/j.automatica.2009.05.030 | MR 2890777 | Zbl 1179.93050
[4] Chiasson, J.: Nonlinear differential-geometric techniques for control of a series DC motor. IEEE Trans. Control Systems Technol. 2 (1994), 1, 35-42. DOI 10.1109/87.273108
[5] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Springer-Verlag, London 2007. DOI 10.1007/978-1-84628-595-0 | MR 2305378
[6] Glumineau, A., Moog, C. H., Plestan, F.: New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 4, 598-603. DOI 10.1109/9.489283 | MR 1385333 | Zbl 0851.93018
[7] Guay, M.: Observer linearization by output-dependent time-scale transformations. IEEE Trans. Automat. Control 47 (2002), 10, 1730-1735. DOI 10.1109/tac.2002.803547 | MR 1929950
[8] Halás, M., Kotta, Ü: A transfer function approach to the realisation problem of nonlinear systems. Int. J. Control 85 (2012), 3, 320-331. DOI 10.1080/00207179.2011.651748 | MR 2881269 | Zbl 1282.93078
[9] Technology, Institute of Cybernetics at Tallinn University of: NLControl website. (2014). DOI 
[10] Isidori, A.: Nonlinear Control Systems: An Introduction. Lect. Notes Control Inform. Sci. 72, Springer-Verlag, Berlin 1985. DOI 10.1007/bfb0006368 | MR 0895138 | Zbl 0569.93034
[11] Johnson, W. P.: The curious history of Faà di Bruno's formula. Amer. Math. Monthly 109 (2002), 3, 217-234. DOI 10.2307/2695352 | MR 1903577 | Zbl 1024.01010
[12] Jouan, P.: Immersion of nonlinear systems into linear systems modulo output injection. SIAM J. Control Optim. 41 (2003), 6, 1756-1778. DOI 10.1137/s0363012901391706 | MR 1972533 | Zbl 1036.93006
[13] Kaparin, V., Kotta, Ü.: Necessary and sufficient conditions in terms of differential-forms for linearization of the state equations up to input-output injections. In: UKACC International Conference on CONTROL 2010 (K. J. Burnham and V. E. Ersanilli, eds.), IET, Coventry 2010, pp. 507-511. DOI 10.1049/ic.2010.0334
[14] Kaparin, V., Kotta, Ü.: Theorem on the differentiation of a composite function with a vector argument. Proc. Est. Acad. Sci. 59 (2010), 3, 195-200. DOI 10.3176/proc.2010.3.01 | MR 2743565 | Zbl 1205.26019
[15] Krener, A. J., Isidori, A.: Linearization by output injection and nonlinear observers. Systems Control Lett. 3 (1983), 1, 47-52. DOI 10.1016/0167-6911(83)90037-3 | MR 0713426 | Zbl 0524.93030
[16] Krener, A. J., Respondek, W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 2, 197-216. DOI 10.1137/0323016 | MR 0777456 | Zbl 0569.93035
[17] Mullari, T., Kotta, Ü.: Transformation the nonlinear system into the observer form: Simplification and extension. Eur. J. Control 15 (2009), 2, 177-183. DOI 10.3166/ejc.15.177-183 | MR 2509832 | Zbl 1298.93117
[18] Noh, D., Jo, N. H., Seo, J. H.: Nonlinear observer design by dynamic observer error linearization. IEEE Trans. Automat. Control 49 (2004), 10, 1746-1750. DOI 10.1109/tac.2004.835397 | MR 2091326
[19] Respondek, W., Pogromsky, A., Nijmeijer, H.: Time scaling for observer design with linearizable error dynamics. Automatica 40 (2004), 2, 277-285. DOI 10.1016/j.automatica.2003.09.012 | MR 2145305 | Zbl 1055.93010
[20] Tõnso, M., Rennik, H., Kotta, Ü.: WebMathematica-based tools for discrete-time nonlinear control systems. Proc. Est. Acad. Sci. 58 (2009), 4, 224-240. DOI 10.3176/proc.2009.4.04 | MR 2604250 | Zbl 1179.93079
Partner of
EuDML logo