[2] Bestle, D., Zeitz, M.:
Canonical form observer design for non-linear time-variable systems. Int. J. Control 38 (1983), 2, 419-431.
DOI 10.1080/00207178308933084
[4] Chiasson, J.:
Nonlinear differential-geometric techniques for control of a series DC motor. IEEE Trans. Control Systems Technol. 2 (1994), 1, 35-42.
DOI 10.1109/87.273108
[5] Conte, G., Moog, C. H., Perdon, A. M.:
Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Springer-Verlag, London 2007.
DOI 10.1007/978-1-84628-595-0 |
MR 2305378
[6] Glumineau, A., Moog, C. H., Plestan, F.:
New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 4, 598-603.
DOI 10.1109/9.489283 |
MR 1385333 |
Zbl 0851.93018
[9] Technology, Institute of Cybernetics at Tallinn University of:
NLControl website. (2014).
DOI
[13] Kaparin, V., Kotta, Ü.:
Necessary and sufficient conditions in terms of differential-forms for linearization of the state equations up to input-output injections. In: UKACC International Conference on CONTROL 2010 (K. J. Burnham and V. E. Ersanilli, eds.), IET, Coventry 2010, pp. 507-511.
DOI 10.1049/ic.2010.0334
[18] Noh, D., Jo, N. H., Seo, J. H.:
Nonlinear observer design by dynamic observer error linearization. IEEE Trans. Automat. Control 49 (2004), 10, 1746-1750.
DOI 10.1109/tac.2004.835397 |
MR 2091326