Previous |  Up |  Next

Article

Keywords:
regularized Perona-Malik equation; gradient schemes
Summary:
We develop gradient schemes for the approximation of the Perona-Malik equations and nonlinear tensor-diffusion equations. We prove the convergence of these methods to the weak solutions of the corresponding nonlinear PDEs. A particular gradient scheme on rectangular meshes is then studied numerically with respect to experimental order of convergence which shows its second order accuracy. We present also numerical experiments related to image filtering by time-delayed Perona-Malik and tensor diffusion equations.
References:
[1] Aavatsmark, I., Barkve, T., Bøe, Ø., Mannseth, T.: Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127 (1996), 2-14. DOI 10.1006/jcph.1996.0154 | Zbl 0859.76048
[2] Amann, H.: Time-delayed Perona-{M}alik type problems. Acta Math. Univ. Comen., New Ser. 76 (2007), 15-38. MR 2331050 | Zbl 1132.68067
[3] Bartels, S., Prohl, A.: Stable discretization of scalar and constrained vectorial Perona-{M}alik equation. Interfaces Free Bound. 9 (2007), 431-453. MR 2358212 | Zbl 1147.35011
[4] Bellettini, G., Novaga, M., Paolini, M., Tornese, C.: Convergence of discrete schemes for the Perona-{M}alik equation. J. Differ. Equations 245 (2008), 892-924. DOI 10.1016/j.jde.2008.05.003 | MR 2427400 | Zbl 1155.35002
[5] Cancès, C., Gallouët, T.: On the time continuity of entropy solutions. J. Evol. Equ. 11 (2011), 43-55. DOI 10.1007/s00028-010-0080-0 | MR 2780572 | Zbl 1232.35029
[6] Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29 (1992), 182-193. DOI 10.1137/0729012 | MR 1149092 | Zbl 0746.65091
[7] Čunderlík, R., Mikula, K., Tunega, M.: Nonlinear diffusion filtering of data on the Earth's surface. J. Geod. 87 (2013), 143-160. DOI 10.1007/s00190-012-0587-y
[8] Drblíková, O., Handlovičová, A., Mikula, K.: Error estimates of the finite volume scheme for the nonlinear tensor-driven anisotropic diffusion. Appl. Numer. Math. 59 (2009), 2548-2570. DOI 10.1016/j.apnum.2009.05.010 | MR 2553154 | Zbl 1172.65052
[9] Drblíková, O., Mikula, K.: Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing. SIAM J. Numer. Anal. 46 (2007), 37-60. DOI 10.1137/070685038 | MR 2377254
[10] Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010), 265-295. DOI 10.1142/S0218202510004222 | MR 2649153 | Zbl 1191.65142
[11] Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. P. G. Ciarlet et al. Handbook of numerical analysis. Vol. 7: Solution of equations in $\mathbb R^n$ (Part 3) Techniques of scientific computing (Part 3) North Holland/Elsevier, Amsterdam (2000), 713-1020. MR 1804748 | Zbl 0981.65095
[12] Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes {SUSHI}: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010), 1009-1043. DOI 10.1093/imanum/drn084 | MR 2727814 | Zbl 1202.65144
[13] Eymard, R., Guichard, C., Herbin, R.: Small-stencil 3D schemes for diffusive flows in porous media. ESAIM, Math. Model. Numer. Anal. 46 (2012), 265-290. DOI 10.1051/m2an/2011040 | MR 2855643 | Zbl 1271.76324
[14] Eymard, R., Herbin, R.: Gradient scheme approximations for diffusion problems. J. Fořt et al. Finite Volumes for Complex Applications 6: Problems and Perspectives. Vol. 1, 2. Conf. Proc. Proceedings in Mathematics 4 Springer, Heidelberg (2011), 439-447. MR 2882320 | Zbl 1246.65205
[15] Eymard, R., Herbin, R., Latché, J. C.: Convergence analysis of a colocated finite volume scheme for the incompressible Navier-{S}tokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007), 1-36. DOI 10.1137/040613081 | MR 2285842 | Zbl 1173.76028
[16] Eymard, R., Mercier, S., Prignet, A.: An implicit finite volume scheme for a scalar hyperbolic problem with measure data related to piecewise deterministic Markov processes. J. Comput. Appl. Math. 222 (2008), 293-323. DOI 10.1016/j.cam.2007.10.053 | MR 2474631 | Zbl 1158.65008
[17] Handlovičová, A., Krivá, Z.: Error estimates for finite volume scheme for Perona-{M}alik equation. Acta Math. Univ. Comen., New Ser. 74 (2005), 79-94. MR 2154399 | Zbl 1108.35083
[18] Handlovičová, A., Mikula, K., Sgallari, F.: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93 (2003), 675-695. DOI 10.1007/s002110100374 | MR 1961884 | Zbl 1065.65105
[19] Mikula, K., Ramarosy, N.: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numer. Math. 89 (2001), 561-590. DOI 10.1007/PL00005479 | MR 1864431 | Zbl 1013.65094
[20] Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990), 629-639. DOI 10.1109/34.56205
[21] Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31 (1999), 111-127. DOI 10.1023/A:1008009714131
Partner of
EuDML logo