[1] Aavatsmark, I., Barkve, T., Bøe, Ø., Mannseth, T.:
Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127 (1996), 2-14.
DOI 10.1006/jcph.1996.0154 |
Zbl 0859.76048
[2] Amann, H.:
Time-delayed Perona-{M}alik type problems. Acta Math. Univ. Comen., New Ser. 76 (2007), 15-38.
MR 2331050 |
Zbl 1132.68067
[3] Bartels, S., Prohl, A.:
Stable discretization of scalar and constrained vectorial Perona-{M}alik equation. Interfaces Free Bound. 9 (2007), 431-453.
MR 2358212 |
Zbl 1147.35011
[7] Čunderlík, R., Mikula, K., Tunega, M.:
Nonlinear diffusion filtering of data on the Earth's surface. J. Geod. 87 (2013), 143-160.
DOI 10.1007/s00190-012-0587-y
[9] Drblíková, O., Mikula, K.:
Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing. SIAM J. Numer. Anal. 46 (2007), 37-60.
DOI 10.1137/070685038 |
MR 2377254
[10] Droniou, J., Eymard, R., Gallouët, T., Herbin, R.:
A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010), 265-295.
DOI 10.1142/S0218202510004222 |
MR 2649153 |
Zbl 1191.65142
[11] Eymard, R., Gallouët, T., Herbin, R.:
Finite volume methods. P. G. Ciarlet et al. Handbook of numerical analysis. Vol. 7: Solution of equations in $\mathbb R^n$ (Part 3) Techniques of scientific computing (Part 3) North Holland/Elsevier, Amsterdam (2000), 713-1020.
MR 1804748 |
Zbl 0981.65095
[12] Eymard, R., Gallouët, T., Herbin, R.:
Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes {SUSHI}: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010), 1009-1043.
DOI 10.1093/imanum/drn084 |
MR 2727814 |
Zbl 1202.65144
[14] Eymard, R., Herbin, R.:
Gradient scheme approximations for diffusion problems. J. Fořt et al. Finite Volumes for Complex Applications 6: Problems and Perspectives. Vol. 1, 2. Conf. Proc. Proceedings in Mathematics 4 Springer, Heidelberg (2011), 439-447.
MR 2882320 |
Zbl 1246.65205
[15] Eymard, R., Herbin, R., Latché, J. C.:
Convergence analysis of a colocated finite volume scheme for the incompressible Navier-{S}tokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007), 1-36.
DOI 10.1137/040613081 |
MR 2285842 |
Zbl 1173.76028
[16] Eymard, R., Mercier, S., Prignet, A.:
An implicit finite volume scheme for a scalar hyperbolic problem with measure data related to piecewise deterministic Markov processes. J. Comput. Appl. Math. 222 (2008), 293-323.
DOI 10.1016/j.cam.2007.10.053 |
MR 2474631 |
Zbl 1158.65008
[17] Handlovičová, A., Krivá, Z.:
Error estimates for finite volume scheme for Perona-{M}alik equation. Acta Math. Univ. Comen., New Ser. 74 (2005), 79-94.
MR 2154399 |
Zbl 1108.35083
[18] Handlovičová, A., Mikula, K., Sgallari, F.:
Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93 (2003), 675-695.
DOI 10.1007/s002110100374 |
MR 1961884 |
Zbl 1065.65105
[20] Perona, P., Malik, J.:
Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990), 629-639.
DOI 10.1109/34.56205