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Abstract. We develop gradient schemes for the approximation of the Perona-Malik equa-
tions and nonlinear tensor-diffusion equations. We prove the convergence of these methods
to the weak solutions of the corresponding nonlinear PDEs. A particular gradient scheme
on rectangular meshes is then studied numerically with respect to experimental order of
convergence which shows its second order accuracy. We present also numerical experiments
related to image filtering by time-delayed Perona-Malik and tensor diffusion equations.
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1. Introduction

A large class of image processing methods is based on the use of approximate

solutions to equations of the following type:

(1.1) ut − div(G(u, x, t)∇u) = r(x, t) for a.e. (x, t) ∈ Ω× (0, T )

with the initial condition

(1.2) u(x, 0) = uini(x) for a.e. x ∈ Ω,

and homogeneous Neumann boundary condition

(1.3) G(u, x, t)∇u(x, t) · n∂Ω(x) = 0 for a.e. (x, t) ∈ ∂Ω× R+,

The research of A.Handlovičová, K.Mikula and O. Stašová has been supported by grants
APVV-0184-10, VEGA 1/1063/11 and VEGA 1/1137/12.
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where the following hypotheses, called Hypotheses (H) in this paper, are considered:

⊲ Ω is an open bounded polyhedron in Rd, d ∈ N
⋆, with boundary ∂Ω,

⊲ T > 0, uini ∈ L2(Ω), r ∈ L2(Ω× (0, T )),

⊲ the possibly nonlocal function G is such that:

(1.4) G : L2(Ω)× Ω× (0, T ) → L(Rd,Rd),

G(·, x, t) is continuous for a.e. (x, t) ∈ Ω× (0, T ),

G(u, ·, ·) is measurable for all u ∈ L2(Ω),

G(u, x, t) is self-adjoint with eigenvalues in (λ, λ), λ > 0

for all u ∈ L2(Ω) and for a.e. (x, t) ∈ Ω× (0, T ),

denoting by L(Rd,Rd) the set of linear mappings from R
d to Rd.

In image processing applications, uini represents an original noisy image, the so-

lution u(x, t) represents its filtering which depends on the scale parameter t. The

space dimension d is equal to 2 for 2D image filtering, 3 for 3D image or 2D+time

movie filtering and 4 for 3D+time filtering of spatio-temporal image sequences. The

image processing methods based on approximations of equation (1.1) differ by the

definition of the function G. In this paper, we consider cases where G arises from

some regularization of the Perona-Malik equation [20], which reads

(1.5) ∂tu− div(g(|∇u|)∇u) = 0,

where

(1.6) g(s) =
1

1 +Ks2
∀ s ∈ R

+,

for a givenK > 0. Recall that the mapping s 7→ sg(s) is not monotonically increasing

on R
+, and therefore the Perona-Malik equation is an ill-posed parabolic problem

on general initial data.

The convergence of a numerical scheme for the one-dimensional original Perona-

Malik problem (1.5) is proved in [4]. The analysis of a finite element discretization

of a modified Perona-Malik equation is performed in [3]; in this latter work, the

function g depends on the x and y derivatives of u, rather than on the norm of the

full gradient, which is the case considered here.

We first consider a regularization of the example due to Catté, Lions, Morel,

and Coll [6]; this example gives an approximation of the time delayed Perona-Malik

equation, using

(1.7) ∂tu− div(G(u(·, t), ·)∇u) = 0
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with

(1.8) G(u, x) = max

(
g

(∣∣∣∣
∫

Ω

u(y)∇Gσ(x− y) dy

∣∣∣∣
)
, α

)
∀u ∈ L1(Ω),

where α > 0 is a given small value (in [6], although the parameter α is not introduced,

a similar bound as below is obtained) and Gσ ∈ C∞(Rd) is a smoothing kernel, e.g.,

the Gauss function or mollifier with a compact support, for which
∫
Rd Gσ(x) dx = 1.

Thanks to the convolution properties, the nonlinearity in the diffusion term depends

on the unknown function u, contrary to the original Perona-Malik equation (without

convolution) where it depends on the gradient of the solution. Note that since the

function s 7→ max(g(s), α) is Lipschitz continuous with some constant Lg, we get

that for all u, v ∈ L1(Ω),

|G(u, x)−G(v, x)| 6 Lg

∣∣∣∣

∣∣∣∣
∫

Ω

u(y)∇Gσ(x− y) dy

∣∣∣∣−
∣∣∣∣
∫

Ω

v(y)∇Gσ(x− y) dx

∣∣∣∣

∣∣∣∣

6 Lg

∣∣∣∣
∫

Ω

(u(y)− v(y))∇Gσ(x− y) dy

∣∣∣∣ 6 Lg‖∇Gσ‖∞‖u− v‖L1(Ω),

which shows that (1.8) enters into the framework defined by Hypotheses (H). In the

case of the regularized model, the convergence of classical finite volume schemes was

proved in [19], [17].

Another interesting image processing model with the structure of equation (1.1)

is the so-called nonlinear tensor anisotropic diffusion introduced by Weickert [21].

In that case, the linear mapping G(u, x, t) represents the so-called diffusion tensor

depending on the eigenvalues and eigenvectors of the (regularized) structure tensor

with matrix

(1.9) J̺(∇uσ) = G̺ ∗ (∇uσ∇uσ
T),

where f ∗ g denotes the convolution between the two functions f and g, uσ is defined

by

(1.10) uσ(x, t) = (Gσ ∗ u(·, t))(x)

and Gσ and G̺ are Gaussian kernels. In computer vision, the matrix J̺ =
(

a b

b c

)
,

which is symmetric and positive semidefinite, is also known as the interest oper-

ator or second moment matrix. We may write a = G̺ ∗ (∂1Gσ ∗ u)2, b = G̺ ∗

((∂1Gσ ∗ u)(∂2Gσ ∗ u)) and c = G̺ ∗ (∂2Gσ ∗ u)2. The orthogonal set of eigenvectors

(v, w) of J̺ corresponding to its eigenvalues (µ1, µ2), µ1 > µ2, is such that the ori-

entation of the eigenvector w, which corresponds to the smaller eigenvalue µ2, gives
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the so-called coherence orientation. This orientation has the lowest fluctuations in

image intensity. The diffusion tensor G in equation (1.1) is then designed to steer

a smoothing process so that the filtering is strong along the coherence direction w and

increasing with the coherence defined by the difference of the eigenvalues (µ1−µ2)
2.

To that goal, G must possess the same eigenvectors v = (v1, v2) and w = (−v2, v1)

as the structure tensor J̺(∇uσ) and the eigenvalues of G can be chosen as follows:

(1.11) κ1 = α, α ∈ (0, 1), α ≪ 1,

κ2 =





α, if µ1 = µ2,

α+ (1− α) exp
( −C

(µ1 − µ2)2

)
, C > 0 otherwise.

So, the matrix MG of the linear operator G(u, x, t) is finally defined by

(1.12) MG = ABA−1, where A =

(
v1 −v2

v2 v1

)
and B =

(
κ1 0

0 κ2

)
.

Thanks to this construction by convolutions, the diffusion matrix (nonlinearly) de-

pends on the solution u and it satisfies smoothness, symmetry and uniform positive

definiteness properties. It is then possible to show that it enters into Hypotheses (H)

by similar computations to those done above and in [9]. The so-called diamond-cell

finite volume schemes for the nonlinear tensor anisotropic diffusion were suggested

and analyzed in [9], [8].

Another type of regularization of the classical Perona-Malik approach is obtained

by considering the gradient information from delayed time t − t, for a given t > 0.

We call this model the time-delayed Perona-Malik equation: consider (1.1) with

uini ∈ H1(Ω), and define u(x, t) = uini(x) for x ∈ Ω and t < 0. Then, for any k ∈ N,

we define the function G in the time interval (kt, (k + 1)t), by

(1.13) G(x, t) = max(g(|∇u(x, t− t)|), α),

where α > 0 is again a small parameter. Then problem (1.1) boils down to a standard

linear parabolic problem on (kt, (k + 1)t) (which is included in the framework of

Hypotheses (H)), and, as shown in the numerical part of this paper, it leads to an

efficient approximation of the Perona-Malik equation.

An integral average on a given shifted time interval is used in [2] for regularization

purposes. Our regularization can be understood as a discrete approximation of the

integral average, e.g., by a mid-point rule. Note that the Amann theory holds for

the original integral regularization without numerical integration while our theory

and convergence proofs are valid for the gradient approximation shifted backward in

time.
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We focus in this paper on the use of the family of gradient schemes [14], [13]

for the approximation of the preceding problems. Indeed, this general framework

simultaneously includes conforming finite element methods, with or without mass

lumping, mixed finite elements, nonconforming P 1 finite elements, and a large va-

riety of more recent methods inspired by finite volume schemes (in particular the

Hybrid Mimetic Mixed family which includes the Mimetic Finite Difference schemes,

the SUSHI scheme and the Mixed Finite Volume scheme, see [10]). The particular

gradient scheme which is used in this paper can be seen as a Multi-Point Flux-

Approximation scheme [1]. The interest of directly studying the convergence of the

family of gradient schemes is that the proofs which are done here apply to the whole

family of discretizations entering into this framework.

This paper is organized as follows. After providing the description of a weak

solution in Section 2, we define the class of gradient schemes for the approximation

of models based on equation (1.1). We then prove their convergence in Section 3.

Then in Section 4, we consider a particular scheme applied to the approximation

of the time-delayed Perona-Malik equation and nonlinear tensor-diffusion equation

for image filtering purposes. Finally, numerical results are presented in Section 5,

exhibiting the accuracy of the proposed method and original applications to image

filtering.

2. The weak formulation

Definition 2.1 (Weak solution to (1.1)–(1.3)). Under Hypotheses (H), a func-

tion u is a weak solution of (1.1)–(1.3) if, for all T > 0,

(1) u ∈ L2(0, T ;H1(Ω)),

(2) the following holds:

(2.1)

∫ T

0

∫

Ω

(−u(x, t)ϕt(t)w(x) + ϕ(t)G(u, x, t)∇u(x, t) · ∇w(x)) dxdt

−

∫

Ω

uini(x)w(x)ϕ(0) dx =

∫ T

0

∫

Ω

r(x, t)w(x)ϕ(t) dxdt

∀w ∈ H1(Ω), ∀ϕ ∈ C∞
c ([0, T )),

where we denote by C∞
c ([0, T )) the set of functions of C∞

c ((−∞, T )) restricted

to [0, T ).

We have the following standard result [5].
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Theorem 2.1 (Properties of a weak solution u to (1.1)–(1.3)). Under Hypothe-

ses (H), the function u is a weak solution to (1.1)–(1.3) in the sense of Definition 2.1

if and only if

(1) u ∈ L2(0, T ;H1(Ω)), ut ∈ L2(0, T ;H1(Ω)′) (defining the standard continuous

embedding of L2(Ω) in H1(Ω)′), and therefore u ∈ C0([0, T ];L2(Ω)),

(2) u(x, 0) = uini(x) for a.e. x ∈ Ω,

(3) the following holds:

(2.2)

∫ T

0

(
〈ut(t), v(t)〉H1(Ω)′,H1(Ω) +

∫

Ω

G(u, x, t)∇u(x, t) · ∇v(x, t) dx

)
dt

=

∫ T

0

∫

Ω

r(x, t)v(x, t) dxdt ∀ v ∈ L2(0, T ;H1(Ω)).

Then u satisfies the following consequence of the above properties:

(2.3)
1

2

∫

Ω

(u(x, t0)
2 − uini(x)

2) dx+

∫ t0

0

∫

Ω

G(u, x, t)∇u(x, t) · ∇u(x, t) dxdt

=

∫ t0

0

∫

Ω

r(x, t)u(x, t) dxdt ∀ t0 ∈ [0, T ].

3. Approximate gradient schemes for parabolic equations

3.1. Definition of the scheme

Definition 3.1 (Approximate gradient discretization and gradient scheme). Un-

der Hypotheses (H), an approximate gradient discretization D is defined by D =

(XD,ΠD,∇D), where:

(1) the set of discrete unknowns XD is a finite dimensional vector space on R,

(2) the mapping ΠD : XD → L2(Ω) is the reconstruction of the approximate func-

tion,

(3) the mapping ∇D : XD → L2(Ω)d is the reconstruction of the gradient of the

function,

(4) ‖u‖D =
(
‖ΠDu‖

2
L2(Ω) + ‖∇Du‖

2
L2(Ω)d

)1/2
is a norm on XD.

Then the compactness of the discretization is measured by the function TD : R
d →

R
+, defined by

(3.1) TD(ξ) = max
v∈XD\{0}

‖ΠDv(·+ ξ)−ΠDv‖L2(Rd)

‖v‖D
∀ ξ ∈ R

d,

where ΠDv is set to zero outside of Ω. Note that lim
|ξ|→0

TD(ξ) = 0.
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The strong consistency of the discretization is measured by the interpolation error

function SD : H1
0 (Ω) → [0,∞), defined by

(3.2) SD(ϕ) = min
v∈XD

(‖ΠDv − ϕ‖2L2(Ω) + ‖∇Dv −∇ϕ‖2L2(Ω)d)
1/2 ∀ϕ ∈ H1(Ω).

The limit conformity of the discretization is measured by the conformity error func-

tion WD : Hdiv,0(Ω) → [0,+∞) (where Hdiv,0(Ω) denotes the set of all elements of

Hdiv(Ω) with zero normal trace), defined by

(3.3) WD(ϕ) = max
u∈XD\{0}

1

‖u‖D

∣∣∣∣
∫

Ω

(∇Du(x) · ϕ(x) + ΠDu(x) divϕ(x)) dx

∣∣∣∣

∀ϕ ∈ Hdiv,0(Ω).

Definition 3.2 (Space-time discretization). Let the Hypotheses (H) be fulfilled.

We say that (D, τ) is a space-time gradient discretization of Ω× (0, T ), if

⊲ D = (XD,ΠD,∇D) is an approximate gradient discretization of Ω in the sense

of Definition 3.1,

⊲ there exists NT ∈ N with T = NT τ , where τ > 0 is the time step.

We then define XD,τ = {(un)n=1,...,NT
, un ∈ XD}, and we define the mappings

ΠD,τ : XD,τ → L2(Ω× (0, T )) and ∇D,τ : XD,τ → L2(Ω× (0, T ))d by

(3.4) ΠD,τu(x, t) = ΠDu
n(x) for a.e. x ∈ Ω, ∀ t ∈ ((n− 1)τ, nτ ], ∀n = 1, . . . , NT ,

and

(3.5) ∇D,τu(x, t) = ∇Du
n(x) for a.e. x ∈ Ω, ∀ t ∈ ((n− 1)τ, nτ ], ∀n = 1, . . . , NT .

Let (D, τ) be a space-time discretization of Ω × (0, T ). We define the following

scheme for the discretization of problem (1.1):

(3.6) u ∈ XD,τ , δτu(x, t) =
1

τ
(ΠDu

1(x)− uini(x)) for a.e. x ∈ Ω, ∀ t ∈ (0, τ ],

δτu(x, t) =
1

τ
(ΠDu

n(x) −ΠDu
n−1(x)) for a.e. x ∈ Ω,

∀ t ∈ ((n− 1)τ, nτ ], ∀n = 2, . . . , NT ,

and

(3.7)

∫ T

0

∫

Ω

(δτuΠD,τv +GD,τ (ΠD,τu, x, t)∇D,τu · ∇D,τv) dxdt

=

∫ T

0

∫

Ω

rΠD,τv dxdt, ∀ v ∈ XD,τ ,
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where

(3.8) GD,τ : L2(Ω)× Ω× (0, T ) → L(Rd,Rd), there exists CD,τ > 0

with ‖GD,τ (v, x, t)−G(v, x, t)‖L(Rd,Rd) 6 CD,τ‖v‖L2(Ω),

∀ v ∈ L2(Ω), for a.e. (x, t) ∈ Ω× (0, T ),

GD,τ (u, ·, ·) is measurable for all u ∈ L2(Ω× (0, T )),

GD,τ (u, x, t) is self-adjoint with eigenvalues in (λ, λ)

for all u ∈ L2(Ω) and for a.e. (x, t) ∈ Ω× (0, T ).

We then denote ΠD,τu(·, 0) = uini, hence defining ΠD,τu(·, t) for all t ∈ [0, T ].

R em a r k 3.1. Note that assumption (3.8) holds in particular for GD,τ = G,

which occurs in some of the numerical applications.

3.2. Properties of the scheme

Lemma 3.1 (L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)) estimates and existence of

a discrete solution). Under Hypotheses (H), let (D, τ) be a space-time gradient

discretization of Ω × (0, T ) in the sense of Definition 3.2. Then there exists at

least one solution to scheme (3.6)–(3.7), which moreover satisfies that there exists

a constant C1 > 0 such that

(3.9) ‖ΠDu
m‖2L2(Ω) 6 C1(‖uini‖

2
L2(Ω) + T ‖r‖2L2(Ω×(0,T ))) ∀m = 1, . . . , NT ,

and

(3.10) ‖∇D,τu‖
2
L2(Ω×(0,T ))d 6

C1

λ
(‖uini‖

2
L2(Ω) + T ‖r‖2L2(Ω×(0,T ))).

P r o o f. Let m = 1, . . . , NT and let us set v
n = un for n = 1, . . . ,m and vn = 0

for n = m + 1, . . . , NT in (3.7). We obtain, thanks to the equality a(a − b) =
1
2 (a

2 + (a− b)2 − b2),

(3.11)

∫

Ω

(
1

2
(ΠDu

m(x)2 − uini(x)
2) + λ

∫ mτ

0

|∇D,τu(x, t)|
2 dt

)
dx

6

∫ mτ

0

∫

Ω

r(x, t)ΠD,τu(x, t) dxdt.

Applying the Young inequality to the right-hand side provides
∫

Ω

(
1

2
(ΠDu

m(x)2 − uini(x)
2) + λ

∫ mτ

0

|∇D,τu(x, t)|
2 dt

)
dx

6 T

∫ mτ

0

∫

Ω

r(x, t)2 dxdt+
1

4T

∫ mτ

0

∫

Ω

ΠD,τu(x, t)
2 dxdt.
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We now give a discrete version of the Gronwall lemma. For am =
∫
Ω
ΠDu

m(x)2 dx,

b =
∫
Ω uini(x)

2 dx+ 2T
∫ T

0

∫
Ω r(x, t)2 dxdt, we get

am 6 b+
1

2T
dm with dm = τ

m∑

n=1

an,

which can be written, setting c = τ/2T 6 1/2 and d0 = 0, as

dm − dm−1 6 τb + cdm.

This gives dm 6 (dm−1+τb)/(1−c), and therefore dm 6 τ
m∑

n=1
b/(1−c)m+1−n. Using

the inequality mc 6 1/2, which leads to − log(1− c) 6 log(2m/(2m− 1)), we get

log
1

(1 − c)m
6 m log

2m

2m− 1
6 m

( 2m

2m− 1
− 1

)
=

m

2m− 1
6 1,

and therefore 1/(1− c)m 6 e. We have

τ

m∑

n=1

1

(1− c)m+1−n
6 τ

1/(1− c)m+1 − 1

1/(1− c)− 1
6

τ

τ/2T

1

(1− c)m
6 2T e,

which gives dm 6 2T eb. Hence, we conclude am 6 (1 + 2e)b, which yields (3.9) and

(3.10). The topological degree argument applied to numerical schemes (see, e.g.,

[15]) allows to conclude to the existence of at least one solution to the scheme. �

Note that the minimal regularity of the initial data corresponding to the framework

of image processing, and the generality of the operatorG prevent from obtaining more

regular estimates than those of Lemma 3.1. In particular, multiplying the scheme

with a discrete time derivative does not seem to yield a better estimate.

We may now state the convergence theorem.

Theorem 3.1. Let Hypotheses (H) be fulfilled. Let (Dm, τm)m∈N be a sequence

of space-time discretizations of Ω × (0, T ) in the sense of Definition 3.2 such that

CDm,τm (introduced in (3.8)) and τm > 0 tend to 0 as m → ∞. We assume that

there exists a function T̃ : R
d → R

+ with lim
|ξ|→0

T̃ (ξ) = 0 such that TDm
6 T̃ for all

m ∈ N, and that

(3.12) ∀ϕ ∈ H1(Ω), lim
m→∞

SDm
(ϕ) = 0,

and

(3.13) ∀ϕ ∈ Hdiv,0(Ω), lim
m→∞

WDm
(ϕ) = 0.

Let, for all m ∈ N, um ∈ XDm,τm be such that (3.6)–(3.7) hold.
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Then there exists a weak solution u to (1.1)–(1.3) in the sense of Definition 2.1 such

that, up to a subsequence, ΠDm,τmum tends to u in L
2(Ω× (0, T )), and ∇Dm

uDm,τm

tends to ∇u for the weak topology of L2(Ω× (0, T ))d. In the case that u is unique,

the whole sequence converges in the same sense.

P r o o f. Thanks to (3.9)–(3.10), we have the existence of some C2 > 0, indepen-

dent of m, such that

‖ΠDm,τmum(·+ ξ, ·)−ΠDm,τmum‖L2(Rd×(0,T ) 6 C2T̃ (ξ).

Let us now prove an estimate on the time translates. Let η ∈ (0, T ). We drop the

index m for the simplicity of notation. We consider

A(η) = ‖ΠD,τu(·, ·+ η)−ΠD,τu‖
2
L2(Ω×(0,T−η)).

Denoting by ν(t) the integer n such that t ∈ ((n − 1)τ, nτ ], we have A(η) =
∫ T−η

0

ν(t+η)∑
n=ν(t)

τ(An
1 −An

2 ) dt, with

An
1 =

1

τ

∫

Ω

(ΠD,τu
n −ΠD,τu

n−1)ΠDu
ν(t+η) dx

and

An
2 =

1

τ

∫

Ω

(ΠD,τu
n −ΠD,τu

n−1)ΠDu
ν(t) dx.

Using (3.7) with vn = uν(t+η) and vp = 0 for p 6= n, we get

An
1 =

1

τ

∫ nτ

(n−1)τ

∫

Ω

(r(x, s)ΠD,τu
ν(t+η)(x)

−GD,τ (ΠD,τu, x, s)∇Du
n(x) · ∇Du

ν(t+η)(x)) dxds.

Thus, we obtain applying Young’s inequality that

An
1 6

1

2
(An

11 +A
ν(t+η)
12 +An

13 +A
ν(t+η)
13 ),

with

An
11 =

1

τ

∫ nτ

(n−1)τ

∫

Ω

r(x, s)2 dxds, An
12 =

∫

Ω

(ΠD,τu
n)2 dx, An

13 = λ

∫

Ω

(∇Du
n)2 dx.

A similar inequality holds for An
2 . Hence, using Lemma 6.1 stated in the Appendix,

and (3.9)–(3.10), we get the existence of C3, which does not depend on m, such that

A(η) 6 C3η.
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Thanks to (3.9) which is a L∞(0, T ;L2(Ω)) bound on the approximate solution,

it is easy to extend the time translates from (0, T − η) to R, for the approximate

solution set to 0 outside of Ω × (0, T ). This proves that the time translates of

ΠDm,τmum uniformly tend to 0. Then, thanks to Kolmogorov’s theorem, we may

extract a subsequence such that ΠDm,τmum converges in L2(Ω × (0, T )) to some

function u ∈ L2(Ω × (0, T )). Since ∇Dm,τmum is bounded in L2(Ω × (0, T ))d, it

weakly converges in L2(Ω× (0, T ))d, up to a subsequence, to some function G̃. For

given ϕ ∈ Hdiv,0(Ω) and ϕ ∈ C∞
c ((0, T )), we can write, using (3.3),

t

∣∣∣∣
∫ T

0

∫

Ω

ϕ(t)(∇Dm,τmum · ϕ+ΠDm,τmum divϕ) dxdt

∣∣∣∣

6

∫ T

0

WDm
(ϕ)ϕ(t)‖um(t)‖Dm

dt.

Letting m → ∞ in the above inequality (which is possible thanks to the bounds of

the right-hand side due to (3.9)–(3.10)) and using (3.13), we find that

∀ϕ ∈ C∞
c ((0, T )), ∀ϕ ∈ Hdiv,0(Ω),

∫ T

0

∫

Ω

ϕ(t)(G̃ · ϕ+ u divϕ) dxdt = 0.

This shows that u ∈ L2(0, T ;H1(Ω)) and that G̃(x, t) = ∇u(x, t) for a.e. (x, t) ∈

Ω× (0, T ).

Let us now prove that u is a weak solution to (1.1)–(1.3) in the sense of Defini-

tion 2.1.

Let ϕ ∈ C∞
c ([0, T )), and w ∈ H1(Ω) be given. We denote by

wm = argmin
v∈XDm

(
‖ΠDm

v − w‖2L2(Ω) + ‖∇Dm
v −∇w‖2L2(Ω)d

)1/2
.

Using (3.12), we have that ΠDm
wm converges to w in L2(Ω) and that ∇Dm

wm

converges to ∇w in L2(Ω)d. Then we set vn = ϕ((n − 1)τ)wm in (3.7), and denote

by ϕm(t) the value ϕ((n − 1)τ) for all t ∈ ((n − 1)τ, nτ ]. We get Tm
1 + Tm

2 = Tm
3 ,

with

Tm
1 =

∫ T

0

∫

Ω

δτmuΠDm
wmϕm(t) dxdt,

Tm
2 =

∫ T

0

ϕm(t)

∫

Ω

GDm,τm(ΠDm,τmu, x, t)∇Dm,τmu · ∇Dm
wm dxdt,

and

Tm
3 =

∫ T

0

ϕm(t)

∫

Ω

rΠDm
wm dxdt.

145



We can rewrite Tm
1 as

Tm
1 = −

∫

Ω

uiniΠDm
wmϕ(0) dx−

NT∑

n=1

∫

Ω

ΠDm
unΠDm

wm(ϕ(nτ)−ϕ((n− 1)τ)) dxdt,

which gives

Tm
1 = −

∫

Ω

uiniΠDm
wmϕ(0) dx−

∫ T

0

∫

Ω

ΠDm,τmuΠDm
wmϕt(t) dxdt.

Hence, we get that

lim
m→∞

Tm
1 = −

∫

Ω

uiniw ϕ(0) dx−

∫ T

0

∫

Ω

u wmϕt(t) dxdt.

Thanks to assumption (3.8), we have, for a.e. (x, t) ∈ Ω× (0, T ):

|GDm,τm(ΠDm,τmu, x, t)−G(u, x, t)|

6 CDm,τm‖ΠDm,τmu(·, t)‖L2(Ω) + |G(ΠDm,τmu, x, t)−G(u, x, t)|.

Thanks to the assumption that CDm,τm tends to 0 as m → ∞, and thanks to the

convergence of ΠDm,τmu(·, t) to u(·, t) in L2(Ω) for a.e. t ∈ (0, T ), we obtain that

GDm,τm(ΠDm,τmu, x, t) converges to G(u, x, t) for a.e. (x, t) ∈ Ω × (0, T ). Noticing

that
∫

Ω

GDm,τm(ΠDm,τmu, x, t)∇Dm,τmu · ∇Dm
wm dx

=

∫

Ω

(GDm,τm(ΠDm,τmu, x, t)−G(u, x, t))∇Dm,τmu · ∇Dm
wm dx

+

∫

Ω

G(u, x, t)∇Dm,τmu · ∇Dm
wm dx,

we get by dominated convergence for the first term and weak-strong convergence for

the second term that

lim
m→∞

Tm
2 =

∫ T

0

ϕ(t)

∫

Ω

G(u, x, t)∇u · ∇w dxdt.

Finally, we also have

lim
m→∞

Tm
3 =

∫ T

0

ϕ(t)

∫

Ω

r w dxdt.

This achieves the proof that u is a weak solution to (1.1)–(1.3) in the sense of

Definition 2.1. �
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Theorem 3.2. Under the hypotheses of Theorem 3.1, let (Dm, τm)m∈N be a sub-

sequence satisfying the properties stated in the conclusions of Theorem 3.1. Then

ΠDm,τmum(·, t) tends to u(t) in L2(Ω) for all t ∈ [0, T ], and ∇Dm
uDm,τm tends to

∇u in L2(Ω × (0, T ))d. In the case that u is unique, the whole sequence converges

in the same sense.

P r o o f. Let w ∈ H1(Ω) and let

wm = argmin
v∈XDm

(‖ΠDm
v − w‖2L2(Ω) + ‖∇Dm

v −∇w‖2L2(Ω)d)
1/2.

Let us consider, for s 6 t ∈ [0, T ],

B(s, t) =

∫

Ω

(ΠDm,τmum(x, t)−ΠDm,τmum(x, s))ΠDm
wm(x) dx.

We find that

B(s, t) =

∫ ν(t+s)τ

(ν(t)−1)τ

∫

Ω

δτmumΠDm
wm(x) dx

=

∫ ν(t+s)τ

(ν(t)−1)τ

∫

Ω

(rΠDm
wm−GDm,τm(ΠDm,τmum, x, t)∇Dm,τmu ·∇Dm

wm) dxdt.

Thanks to the Cauchy-Schwarz inequality, we get the existence of C4, independent

of m and w, such that

B(s, t) 6 (ν(t+ s)τ − (ν(t) − 1)τ)1/2C4‖wm‖Dm
6 (t− s+ 2τm)1/2C4‖wm‖Dm

.

This continuity property is sufficient to apply Theorem 6.1 (given in the Appendix),

proving that for all t ∈ [0, T ], ΠDm,τmum(t) tends to u(t) for the weak topology of

L2(Ω). In the same way as in the proof of Lemma 3.1, we have the property, for

a given t0 ∈ [0, T ] (dropping the indices m),

(3.14)∫

Ω

(
1

2
(ΠD,τu(x, t0)

2 − uini(x)
2) +

∫ ν(t0)τ

0

GD,τ (ΠD,τu, x, t)∇D,τu · ∇D,τu dt

)
dx

6

∫ ν(t0)τ

0

∫

Ω

r(x, t)ΠD,τu(x, t) dxdt.

Passing to the limit in the above inequality, we arrive at

lim sup
m→∞

(
1

2

∫

Ω

ΠD,τu(x, t0)
2 +

∫ ν(t0)τ

0

GD,τ (ΠD,τu, x, t)∇D,τu · ∇D,τu dt

)
dx

6
1

2

∫

Ω

uini(x)
2 dx+

∫ t0

0

∫

Ω

r(x, t)u(x, t) dxdt.
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Since u satisfies (2.3), we have

1

2

∫

Ω

u(x, t0)
2 dx+

∫ t0

0

∫

Ω

G(u, x, t)∇u · ∇u dxdt =
1

2

∫

Ω

(uini)
2 dx+

∫ t0

0

∫

Ω

r u dxdt.

The weak convergence of ΠD,τu(·, t0) to u(·, t0) and of ∇D,τu to ∇u implies that

lim inf
m→∞

1

2

∫

Ω

ΠD,τu(x, t0)
2 >

1

2

∫

Ω

u(x, t0)
2 dx,

lim inf
m→∞

∫ ν(t0)τ

0

GD,τ (ΠD,τu, x, t)∇D,τu · ∇D,τu dt dx >

∫ t0

0

∫

Ω

G(u, x, t)∇u · ∇u dxdt.

Therefore, we obtain

lim
m→∞

1

2

∫

Ω

ΠD,τu(x, t0)
2 =

1

2

∫

Ω

u(x, t0)
2 dx,

lim
m→∞

∫ ν(t0)τ

0

GD,τ (ΠD,τu, x, t)∇D,τu · ∇D,τu dt dx =

∫ t0

0

∫

Ω

G(u, x, t)∇u · ∇u dxdt,

hence concluding the proof of the strong convergence. �

4. A particular gradient scheme

In order to describe the scheme, we now introduce some notation for the space

discretization. Let now Ω be a rectangular domain as is standard in image processing.

(1) A rectangular discretization of Ω is defined by the increasing sequences ai =

x
(i)
0 < x

(i)
1 < . . . < x

(i)

n(i) = bi, i = 1, . . . , d.

(2) We denote by

M = {(x
(1)

i(1)
, x

(1)

i(1)+1
)× . . .× (x

(d)

i(d)
, x

(d)

i(d)+1
),

0 6 i(1) < n(1), . . . , 0 6 i(d) < n(d)}

the set of control volumes. The elements ofM are denoted p, q, . . . We denote

by xp the center of p. For any p ∈ M, let ∂p = p \ p be the boundary of p; let

|p| > 0 denote the measure of p, hp denote the diameter of p and hD denote the

maximum value of (hp)p∈M.

(3) We denote by Ep the set of all faces of p ∈ M (it has 2d elements), by E the

union of all Ep, and for every σ ∈ E, we denote by |σ| its (d − 1)-dimensional

measure. For any σ ∈ E, we define the setMσ = {p ∈ M, σ ∈ Ep} (which has

therefore one or two elements) and by xσ we denote the center of σ. We then

denote by dpσ = |xσ − xp| the orthogonal distance between xp and σ ∈ Ep and

by np,σ the normal vector to σ, outward to p.

148



x
(2)

i(2)

x
(2)

i(2)+1

p

xp xσ

x
(1)

i(1)+1
x
(1)

i(1)

dpσ

Kp,y

y

np,σ

σ

Figure 1. Notation for the meshes.

(4) We denote by Vp the set of all vertices of p ∈ M (it has 2d elements), by V the

union of all Vp, p ∈ M. For y ∈ Vp, we denote by Kp,y the rectangle whose

faces are parallel to those of p, and whose set of vertices contains xp and y. We

denote by Vσ the set of all vertices of σ ∈ E (it has 2d−1 elements), and by Ep,y

the set of all σ ∈ Ep such that y ∈ Vσ (it has d elements).

(5) We define the set XD of all u = ((up)p∈M, (uσ,y)σ∈E,y∈Vσ
).

(6) We denote, for all u ∈ XD, by ΠDu ∈ L2(Ω) the function defined by the constant

value up a.e. in p ∈ M.

(7) For u ∈ XD, p ∈ M and y ∈ Vp, we denote by

(4.1) ∇p,yu =
2

|p|

∑

σ∈Ep,y

|σ|(uσ,y − up)np,σ =
∑

σ∈Ep,y

uσ,y − up

dpσ
np,σ,

and by ∇Du the function defined a.e. on Ω by ∇p,yu on Kp,y.

We then have the following result.

Lemma 4.1. Let Ω = (a1, b1) × . . . × (ad, bd) be an open rectangle in R
d. Let

D = (XD,ΠD,∇D) be a rectangular discretization as described above. Then D is an

approximate gradient discretization in the sense of Definition 3.1, such that under

the regularity condition (x
(j)

i(j)+1
−x

(j)

i(j)
)/(x

(k)

i(k)+1
−x

(k)

i(k)) 6 C, j, k = 1, 2, . . . , d, we get

the existence of T̃ : R
d → R

+ with lim
|ξ|→0

T̃ (ξ) = 0 such that TD 6 T̃ independently

of hD, and that

(4.2) ∀ϕ ∈ H1(Ω), lim
hD→0

SD(ϕ) = 0,

and

(4.3) ∀ϕ ∈ Hdiv,0(Ω), lim
hD→0

WD(ϕ) = 0.
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P r o o f. Let us recall the result, proved in [12]: for such a rectangular discretiza-

tion D, the expression ‖u‖D, defined by

‖u‖2D =
∑

p∈M

|p|u2
p +

∑

p∈M

∑

σ∈Ep

∑

y∈Vσ

|σ|

dpσ
(uσ,y − up)

2 ∀u ∈ XD,

is a norm on XD such that (4.2) holds, where C only depends on the bound on θ.

The limit conformity property (4.3) is proved in the same way as in [12]. We then

remark that ‖u‖2D controls the semi-norm |·|1,T as defined in [11], Definition 10.2,

page 795. We can therefore follow the proof of [11], Theorem 10.3, page 810 using the

discrete trace inequality [11], Lemma 10.5, page 807 in the case of the homogeneous

Neumann boundary conditions, which proves the existence of T as given in this

statement (hence proceeding in the same way as in [9]). �

R em a r k 4.1. The equations obtained, for a given y ∈ V , defining v ∈ XD

for a given σ ∈ Ey by vσ,y = 1 and all other degrees of freedom null, constitute

a local invertible linear system, allowing for expressing all (uσ,y)σ∈Ey
with respect

to all (up,y)p∈My
. This leads to a nine-point stencil on rectangular meshes in 2D,

and a 27-point stencil in 3D (this property is the basis of the MPFA O-scheme [1]).

5. Numerical experiments

E x am p l e 5.1. This example is devoted to a 1D illustration of the time-delayed

regularization of the Perona-Malik equation, as described by (1.13) in the introduc-

tion of this paper. We consider the case Ω = (0, 1), uini(x) = 2x, and α = 1/101

in (1.13). We then apply the scheme presented in Section 4 (it then resumes to

a standard 3-point finite volume scheme), using various values of t. We then show in

Figure 5 the results computed at the final time T = 50, for h = 1/500 for t = 0.2 and

t = 0.5 and τ = 0.01. We see that although the problem is regularized, the numerical

solution shows discontinuities resulting from the ill-posedness of the Perona-Malik

equation. Turning to the values t = 1 and t = 5, with τ = 0.1, we observe in Figure 5

that the regularity of the numerical solution is significantly increased.

E x am p l e 5.2. In this example we present results of numerical computations for

the regularized Perona-Malik equation in 2D, where the regularization is again of

the type (1.13). We assume that Ω = [0, 1]× [0, 1], and we chose the right hand side r

such that u(x, y, t) = C((x2 + y2)/2− (x3+ y3)/3)t is an exact strong solution of the

problem (1.1)–(1.3). Two test cases, with different time delays t̄, final times T and

coefficients C, are presented. The errors in L2((0, T ), L2(Ω)) and L∞((0, T ), L2(Ω))
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Figure 2. t = 0.2, τ = 0.01 (left), t = 0.5, τ = 0.01 (right).
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Figure 3. t = 1, τ = 0.01 (left), t = 5, τ = 0.1 (right).

for the solution u (denoted by E2, E∞) and for its gradient (denoted by EG2, EG∞)

together with the experimental order of convergence (EOC) are presented in Table 1

for the case t̄ = 0.0625, T = 0.625 and C = 1, and in Table 2 for the case t̄ = 0.625,

T = 6.25 and C = t̄/T = 0.1. These numerical results indicate that the method is

second order accurate, both in solution and gradient approximation.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
4 0.0625 4.771e-4 – 1.022e-3 – 7.184e-3 – 1.450e-2 –

8 0.015625 1.172e-4 1.429 2.692e-4 1.925 1.707e-3 2.073 3.615e-3 2.004

16 0.00390625 2.913e-5 2.604 6.812e-5 1.982 4.213e-4 2.019 9.031e-4 2.001

32 0.0009765625 7.270e-6 2.002 1.708e-5 1.996 1.050e-4 2.004 2.257e-4 2.000

64 0.000244140625 1.815e-6 2.001 4.273e-6 1.999 2.624e-5 2.000 5.643e-5 1.999

Table 1. Example 5.2, t̄ = 0.0625, T = 0.625, C = 1.

E x am p l e 5.3. Image filtering by the time-delayed Perona-Malik model. In this

experiment, we show the results obtained when filtering a noisy image, using the time-

delay regularization of the Perona-Malik equation as given by (1.13). The original
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n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
4 0.0625 1.778e-3 – 1.209e-3 – 2.032e-2 – 1.400e-2 –

8 0.015625 4.594e-4 1.952 3.173e-4 1.930 5.034e-3 2.031 3.478e-3 2.001

16 0.00390625 1.158e-4 1.988 8.021e-5 1.984 1.255e-3 2.004 8.680e-4 2.002

32 0.0009765625 2.898e-5 1.998 2.011e-5 1.996 3.137e-4 2.000 2.169e-4 2.001

64 0.000244140625 7.248e-6 1.999 5.030e-6 1.999 7.842e-5 2.000 5.422e-5 2.000

Table 2. Example 5.2, t̄ = 0.625, T = 6.25, C = t̄
T = 0.1.

image (Figure 5 left top) is damaged by 40 percent additive noise (Figure 5 right

top). In the bottom row of Figure 5 we present the 1st, 10th and 25th denoising steps

which show a correct reconstruction of the original figure. The following parameters

are used in the computations: n(1) = n(2) = 200, h = 0.1, τ = 0.1, t̄ = 0.1. In the

nonlinear function g defined by (1.6), we use the value of parameter K = 100. We

observe that the denoised image does not show any significant alteration after 25

steps, compared to the initial one.

Figure 4. Example 5.3, the original image (left top), the noisy image (right top) and the
results after 1, 10, 25 time steps (bottom, from left to right) of filtering.

E x am p l e 5.4. Image filtering by the nonlinear tensor diffusion. In this example

we present image denoising by the so-called coherence enhancing tensor diffusion [21],

that means the case, where the diffusion coefficient is given by a matrix. The math-
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ematical model is given in the introduction of this paper by (1.9)–(1.10) and (1.11)–

(1.12). In this experiment we use the following parameters: n(1) = n(2) = 250,

h = 0.001, t̄ = 0.000001, τ = 0.000001. The chosen parameters in the convolution

operators are defined by σ = 0.0001 and ̺ = 0.01, and the parameters in (1.11) are

α = 0.0001, C = 1. The convolution is realized in both cases by computing heat

equation for time σ and ̺, respectively, in similar way as in [18]. The scheme uses

explicit values for G, which leads to the definition of a semi-implicit scheme for the

nonlinear tensor diffusion model as in [9], [8]. In Figure 5, one can see the original

image with three crackling lines, and the results after 2 and 5 time steps, showing

that the coherence of the line structures has been improved.

Figure 5. Example 5.4, the original image (left), the results after 2 (middle) and 5 (right)
time steps.

6. Conclusion

Gradient schemes have recently been shown to be efficient for the discretization

of elliptic problems and steady state coupled problems. The present paper shows

that the mathematical framework of the Gradient Scheme also applies to the discrete

analysis of parabolic problems involved in some practical applications. The particular

gradient scheme used in this paper for image processing applications leads to a 9-point

stencil finite volume type scheme, which is unconditionally coercive and convergent.

In the image processing problem under consideration, structural (pixel, voxel) grids

are mainly used; however, other important data processing applications [7] rely on

general triangulated grids (also on surfaces), for which the gradient scheme may still

be used. Its use in further applications will be studied in future works, as well as its

comparison with other schemes [19], [9].
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Appendix

Lemma 6.1. Let T > 0 be given, and let τ = T/NT , for NT ∈ N
⋆. For all

t ∈ [0, T ], we denote by ν(t) the element n ∈ N such that t ∈ ((n − 1)τ, nτ ]). Let

(an)n=1,...,NT
be a family of nonnegative real values. Then

(6.1)

∫ T−η

0

ν(t+η)∑

n=ν(t)

(τan) dt = η

NT∑

n=1

(τan) ∀ η ∈ (0, T )

and

(6.2)

∫ T−η

0

( ν(t+η)∑

n=ν(t)+1

τ

)
aν(t+s) dt 6 η

NT∑

n=1

(τan) ∀ η ∈ (0, T ), ∀ s ∈ (0, η).

The proof of the above lemma follows that of [11], Proof of Lemma 18.6, page 855.

Theorem 6.1. Let Ω be an open bounded subset of R2, a < b ∈ R and (um)m∈N

be a sequence of functions from [a, b] to L2(Ω), such that there exists C1 > 0 with

(6.3) ‖um(t)‖L2(Ω) 6 C1 ∀m ∈ N, ∀ t ∈ [a, b].

We also assume that there exists (τm)m∈N with τm > 0 and lim
m→∞

τm = 0 and a dense

subset R of L2(Ω) such that for all ϕ ∈ R, there exists Cϕ > 0 such that

(6.4) |〈um(t2)− um(t1), ϕ〉L2(Ω),L2(Ω)| 6 Cϕ(t2 − t1 + 2τm)1/2

∀m ∈ N, ∀ a 6 t1 6 t2 6 b.

Then there exists u ∈ L∞(a, b;L2(Ω)) with u ∈ Cw([a, b], L
2(Ω)) (where we denote

by Cw([a, b], L
2(Ω)) the set of functions from [a, b] to L2(Ω), continuous for the weak

topology of L2(Ω)) and a subsequence of (um)m∈N, again denoted by (um)m∈N, such

that for all t ∈ [a, b], um(t) converges to u(t) for the weak topology of L2(Ω).

P r o o f. The proof follows that of Ascoli’s theorem, and we provide it only for

completeness (a similar proof is also provided in [16] in the framework of the weak star

topology of Radon measures). Let (tp)p∈N be a sequence of real numbers, dense in

[a, b]. Due to (6.3), for each p ∈ N, we may extract from (um(tp))m∈N a subsequence

which is convergent to some element of L2(Ω) for the weak topology of L2(Ω). Using

the diagonal method, we can choose a subsequence, again denoted by (um)m∈N, such

that (um(tp))m∈N is weakly convergent for all p ∈ N. For any t ∈ [a, b] and v ∈ L2(Ω),
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we then prove that the sequence (〈um(t), v〉L2(Ω),L2(Ω))m∈N is a Cauchy sequence.

Indeed, let ε > 0 be given. We first choose ϕ ∈ R such that ‖ϕ− v‖L2(Ω) 6 ε. Then,

we choose p ∈ N such that |t − tp| 6 (ε/Cϕ)
2. Since (〈um(tp), ϕ〉L2(Ω),L2(Ω))m∈N is

a Cauchy sequence, we choose n0 ∈ N such that for k, l > n0,

|〈uk(tp)− ul(tp), ϕ〉L2(Ω),L2(Ω)| 6 ε,

and such that τk, τl 6 (ε/Cϕ)
2. We then get, using (6.4),

|〈uk(t)− ul(t), ϕ〉L2(Ω),L2(Ω)| 6 Cϕ((|t− tp|+ 2τk)
1/2 + (|t− tp|+ 2τl)

1/2) + ε,

which gives

|〈uk(t)− ul(t), ϕ〉L2(Ω),L2(Ω)| 6 2 31/2ε+ ε.

We then get, using (6.3),

|〈uk(t)− ul(t), v〉L2(Ω),L2(Ω)| 6 2C1ε+ 2 31/2ε+ ε.

This proves that the sequence (〈um(t), v〉L2(Ω),L2(Ω))m∈N converges. Since

|〈um(t), v〉L2(Ω),L2(Ω)| 6 C1‖v‖L2(Ω),

we get the existence of u(t) ∈ L2(Ω) such that (um(t))m∈N converges to u(t) for the

weak topology of L2(Ω). Then u ∈ Cw([a, b], L
2(Ω)) is obtained by passing to the

limit m → ∞ in (6.4), and by using the density of R in L2(Ω). �
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[11] R.Eymard, T.Gallouët, R. Herbin: Finite volume methods. Handbook of numerical
analysis. Vol. 7: Solution of equations in R

n (Part 3) (P.G.Ciarlet et al., eds.). Tech-
niques of scientific computing (Part 3), North Holland/Elsevier, Amsterdam, 2000,
pp. 713–1020.
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