[1] Domašev, V. V., Mikeš, J.:
On the theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23 (1978), 160-163 translated from Matematicheskie Zametki 23 (1978), Russian 297-303.
DOI 10.1007/BF01153160 |
MR 0492674
[2] Einstein, A.:
The Meaning of Relativity. Princeton University Press Princeton, N. J. (1955).
MR 0076496 |
Zbl 0067.20404
[6] Hinterleitner, I., Mikeš, J.:
On {$F$}-planar mappings of spaces with affine connections. Note Mat. 27 (2007), 111-118.
MR 2367758 |
Zbl 1150.53009
[7] Mikeš, J.:
Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89 (1998), 1334-1353 translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory 30 (1995), Russian.
DOI 10.1007/BF02414875 |
MR 1619720
[8] Mikeš, J.:
Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78 (1996), 311-333 translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory 11 (1994), Russian.
DOI 10.1007/BF02365193 |
MR 1384327
[9] Mikeš, J.:
Geodesic mappings of Ricci 2-symmetric Riemannian spaces. Math. Notes 28 (1981), 922-924 translated from Matematicheskie Zametki 28 313-317 (1980), Russian.
MR 0587405
[10] Mikeš, J., Starko, G. A.:
$K$-concircular vector fields and holomorphically projective mappings on Kählerian spaces. Proceedings of the 16th Winter School on ``Geometry and Physics'', Srn'ı, Czech Republic, 1996 Circolo Matematico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 46 Palermo (1997), 123-127 Jan Slovák et al.
MR 1469028
[11] Mikeš, J., Vanžurová, A., Hinterleitner, I.:
Geodesic Mappings and Some Generalizations. Palacký University, Faculty of Science Olomouc (2009).
MR 2682926 |
Zbl 1222.53002
[12] Minčić, S. M.:
New commutation formulas in the non-symmetric affine connexion space. Publ. Inst. Math., Nouv. Sér. 22 (1977), 189-199.
MR 0482552 |
Zbl 0377.53008
[13] Minčić, S. M.:
Ricci identities in the space of non-symmetric affine connexion. Mat. Vesn., N. Ser. 10 (1973), 161-172.
MR 0341310 |
Zbl 0278.53012
[14] Minčić, S. M., Stanković, M. S.:
Equitorsion geodesic mappings of generalized Riemannian spaces. Publ. Inst. Math., Nouv. Sér. 61 (1997), 97-104.
MR 1472941 |
Zbl 0886.53035
[15] Minčić, S., Stanković, M.:
On geodesic mappings of general affine connexion spaces and of generalized Riemannian spaces. Mat. Vesn. 49 (1997), 27-33.
MR 1491944 |
Zbl 0949.53013
[16] Minčić, S. M., Stanković, M. S., Velimirović, L. S.:
Generalized Kählerian spaces. Filomat 15 (2001), 167-174.
MR 2105108
[17] Moffat, J. W.:
Gravitational theory, galaxy rotation curves and cosmology without dark matter. J. Cosmol. Astropart. Phys. (electronic only) 2005 (2005), Article No. 003, 28 pages.
MR 2139872 |
Zbl 1236.83045
[18] Ōtsuki, T., Tashiro, Y.:
On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57-78.
MR 0066024 |
Zbl 0057.14101
[19] Prvanović, M.:
A note on holomorphically projective transformations of the Kähler spaces. Tensor, New Ser. 35 (1981), 99-104.
MR 0614141 |
Zbl 0467.53032
[20] Pujar, S. S.:
On non-metric semi-symmetric complex connection in a Kaehlerian manifold. Bull. Calcutta Math. Soc. 91 (1999), 313-322.
MR 1748542 |
Zbl 0957.53039
[21] Pušić, N.:
On a curvature-type invariant of a family of metric holomorphically semi-symmetric connections on anti-Kähler spaces. Indian J. Math. 54 (2012), 57-74.
MR 2976295 |
Zbl 1268.53020
[22] Sinjukov, N. S.:
Geodesic mappings of Riemannian spaces. Nauka Moskva Russian (1979).
MR 0552022
[23] Stanković, M. S., Minčić, S. M., Velimirović, L. S.:
On equitorsion holomorphically projective mappings of generalised Kählerian spaces. Czech. Math. J. 54 (2004), 701-715.
DOI 10.1007/s10587-004-6419-3 |
MR 2086727
[25] Tashiro, Y.:
On a holomorphically projective correspondence in an almost complex space. Math. J. Okayama Univ. 6 (1957), 147-152.
MR 0087181 |
Zbl 0077.35501
[26] Yano, K.:
Differential Geometry on Complex and Almost Complex Spaces. International Series of Monographs in Pure and Applied Mathematics 49 Pergamon Press, Macmillan, New York (1965).
MR 0187181 |
Zbl 0127.12405