Previous |  Up |  Next

Article

Keywords:
fractional differential equation; Riemann-Liouville integral; blowing-up solution
Summary:
A sufficient condition for the nonexistence of blowing-up solutions to evolution functional-differential equations in Banach spaces with the Riemann-Liouville integrals in their right-hand sides is proved. The linear part of such type of equations is an infinitesimal generator of a strongly continuous semigroup of linear bounded operators. The proof of the main result is based on a desingularization method applied by the author in his papers on integral inequalities with weakly singular kernels. The result is illustrated on an example of a scalar equation with one Riemann-Liouville integral.
References:
[1] Agarwal, R. P., O'Regan, D., Staněk, S.: Positive solutions for mixed problems of singular fractional differential equations. Math. Nachr. 285 (2012), 27-41. DOI 10.1002/mana.201000043 | MR 2864551 | Zbl 1232.26005
[2] Agarwal, R. P., O'Regan, D., Staněk, S.: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371 (2010), 57-68. DOI 10.1016/j.jmaa.2010.04.034 | MR 2660986 | Zbl 1206.34009
[3] Constantin, A.: Global solutions of perturbed differential equations. C. R. Acad. Sci., Paris, Sér. I Math. 320 French (1995), 1319-1322. MR 1338279 | Zbl 0839.34002
[4] Ezzinbi, K., Jazar, M.: Blow-up results for some nonlinear delay differential equations. Positivity 10 (2006), 329-341. DOI 10.1007/s11117-005-0026-x | MR 2237505 | Zbl 1105.35134
[5] Guo, Z., Liu, M.: An integrodifferential equation with fractional derivatives in the nonlinearities. Acta Math. Univ. Comen., New Ser. 82 (2013), 105-111. MR 3028152
[6] Kirane, M., Medveď, M., Tatar, N.-E.: On the nonexistence of blowing-up solutions to a fractional functional-differential equation. Georgian Math. J. 19 (2012), 127-144. DOI 10.1515/gmj-2012-0006 | MR 2901285 | Zbl 1244.34099
[7] Kirane, M., Medveď, M., Tatar, N.-E.: Semilinear Volterra integrodifferential problems with fractional derivatives in the nonlinearities. Abstr. Appl. Anal. 2011 (2011), Article ID 510314, 11 pages. MR 2800067 | Zbl 1217.45001
[8] Medveď, M.: On the global existence of mild solutions of nonlinear delay systems associated with continuous and analytic semigroups. Electron. J. Qual. Theory Differ. Equ. (electronic only) 2008 (2008), Article No. 13, 10 pages, Proc. Colloq. Qual. Theory Differ. Equ. {\it 8}, 2007, University of Szeged, Bolyai Institute, Szeged, 2008. MR 2509172 | Zbl 1218.47132
[9] Medveď, M.: Singular integral inequalities with several nonlinearities and integral equations with singular kernels. Nonlinear Oscil., N. Y. (electronic only) 11 (2008), 70-79 translated from Nel\=in\=iin\=iKolivannya 11 71-80 (2008). MR 2400018 | Zbl 1275.45002
[10] Medveď, M.: Integral inequalities and global solutions of semilinear evolution equations. J. Math. Anal. Appl. 267 (2002), 643-650. DOI 10.1006/jmaa.2001.7798 | MR 1888028 | Zbl 1028.34055
[11] Medveď, M.: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. Appl. 214 (1997), Article ID ay975532, 349-366. DOI 10.1006/jmaa.1997.5532 | MR 1475574 | Zbl 0893.26006
[12] Naber, M.: Linear fractionally damped oscillator. Int. J. Differ. Equ. 2010 (2010), Article ID 197020, 12 pages. MR 2557328 | Zbl 1207.34010
[13] O'Regan, D., Staněk, S.: Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 71 (2013), 641-652. DOI 10.1007/s11071-012-0443-x | MR 3030127 | Zbl 1268.34023
[14] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44 Springer, New York (1983). MR 0710486 | Zbl 0516.47023
[15] Podlubny, I.: Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in Science and Engineering 198 Academic Press, San Diego (1999). MR 1658022 | Zbl 0924.34008
[16] Seredyńska, M., Hanyga, A.: Nonlinear differential equations with fractional damping with applications to the 1dof and 2dof pendulum. Acta Mech. 176 (2005), 169-183. DOI 10.1007/s00707-005-0220-8 | Zbl 1069.70012
[17] Staněk, S.: Two-point boundary value problems for the generalized Bagley-Torvik fractional differential equation. Cent. Eur. J. Math. 11 (2013), 574-593. DOI 10.2478/s11533-012-0141-4 | MR 3016324 | Zbl 1262.34008
[18] Tatar, N.-E.: Mild solutions for a problem involving fractional derivatives in the nonlinearity and in the non-local conditions. Adv. Difference Equ. (electronic only) 2011 (2011), Article No. 18, 12 pages. MR 2820291 | Zbl 1268.34029
[19] Tatar, N.-E.: Existence results for an evolution problem with fractional nonlocal conditions. Comput. Math. Appl. 60 (2010), 2971-2982. DOI 10.1016/j.camwa.2010.09.057 | MR 2737346 | Zbl 1207.34099
[20] Tatar, N.-E.: The existence of mild and classical solutions for a second-order abstract fractional problem. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 3130-3139. DOI 10.1016/j.na.2010.06.085 | MR 2678671 | Zbl 1197.26009
[21] Torvik, P. J., Bagley, R. L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1984), 294-298. DOI 10.1115/1.3167615 | Zbl 1203.74022
Partner of
EuDML logo