Article
Keywords:
multivariate copulas; transformations; symmetry; order; measures of concordance
Summary:
The present paper introduces a group of transformations on the collection of all multivariate copulas. The group contains a subgroup which is of particular interest since its elements preserve symmetry, the concordance order between two copulas and the value of every measure of concordance.
References:
[1] Durante, F., Sempi, C.:
Copula theory: an introduction. In: Copula Theory and Its Applications (P. Jaworski, F. Durante, W. Häerdle, T. Rychlik, eds.), Springer, Berlin, Heidelberg 2010, pp. 3-31.
MR 3051261
[2] Dolati, A., Úbeda-Flores, M.:
On measures of multivariate concordance. J. Probab. Stat. Sci. 4 (2006), 147-163.
MR 2488161
[3] Fuchs, S., Schmidt, K. D.:
Bivariate copulas: Transformations, asymmetry and measure of concordance. Kybernetika 50 (2013), 109-125.
MR 3195007
[4] Nelsen, R. B.:
An Introduction to Copulas. Second Edition. Springer, New York 2006.
MR 2197664
[6] Taylor, M. D.: Some properties of multivariate measures of concordance. arXiv:0808.3105 (2008).
[7] Taylor, M. D.:
Multivariate measures of concordance for copulas and their marginals. arXiv:1004.5023 (2010).
MR 2397737