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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 5 , PAGES 7 2 5 – 7 4 3

MULTIVARIATE COPULAS: TRANSFORMATIONS,
SYMMETRY, ORDER AND MEASURES OF CONCORDANCE

Sebastian Fuchs

The present paper introduces a group of transformations on the collection of all multivariate
copulas. The group contains a subgroup which is of particular interest since its elements
preserve symmetry, the concordance order between two copulas and the value of every measure
of concordance.

Keywords: multivariate copulas, transformations, symmetry, order, measures of concor-
dance

Classification: 60E05, 62E10, 62H20, 20C99

1. INTRODUCTION

The present paper provides the construction of a group of transformations on the col-
lection of all d–dimensional copulas. This group consists of 2d d! elements and it is of
interest since many of its elements

• preserve symmetry of a copula, or
• preserve concordance order between two copulas, or
• preserve the value of every measure of concordance of a copula.

In fact, we show that a given transformation has one of these properties if and only
if it has each of these properties, and that the collection of all transformations having
these properties is a subgroup which consists of 2d! elements. We also show that the
transformations preserving ordinary order between copulas form a subgroup as well,
and that the group contains a transformation which turns every copula into its survival
copula.

We thus extend parts of the results of Fuchs and Schmidt [3] who considered the case
d = 2 and used the group table and the lattice of subgroups. The case of general d
considered here requires a different reasoning and more abstract arguments.

The group of transformations of d-dimensional copulas considered here can be shown
to be isomorphic to the group of symmetries on the d-dimensional hypercube considered
by Taylor [5, 6, 7] with regard to measures of concordance. Using the group of transfor-
mations is perhaps more abstract than using the group of symmetries, but it avoids the
use of results from measure and probability theory.
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This paper is organized as follows: We first introduce some elementary transforma-
tions of copulas (Section 2), and then construct the smallest group containing these
transformations (Section 3). We next show that the group contains a transformation
which turns every copula into its survival copula (Section 4), and further identify the
subgroups of transformations preserving symmetry and order properties of copulas (Sec-
tion 5) and the value of every measure of concordance of a copula (Section 6). We finally
sketch a probabilistic look at the results of this paper (Section 7).

Let I := [0, 1] and let d be an integer ≥ 2 which will be kept fixed throughout this
paper.

2. ELEMENTARY TRANSFORMATIONS ON COPULAS

We are interested in the collection of all copulas and study transformations that map
the set of copulas into itself. For the sake of a concise definition of a copula we consider,
for L ⊆ {1, . . . , d}, the map ηL : Id × Id → Id given by

(
ηL(u,v)

)
l
:=

{
ul l ∈ {1, . . . , d}\L
vl l ∈ L

l ∈ {1, . . . , d}, and put ηi := η{i} for i ∈ {1, . . . , d}.

A copula is a function C : Id → I satisfying the following conditions:

(i) The inequality ∑
L⊆{1,...,d}

(−1)d−|L| C
(
ηL(u,v)

)
≥ 0

holds for all u,v ∈ Id such that u ≤ v.
(ii) The identity

C
(
ηi(u,0)

)
= 0

holds for all u ∈ Id and all i ∈ {1, . . . , d}.
(iii) The identity

C
(
ηi(1,u)

)
= ui

holds for all u ∈ Id and all i ∈ {1, . . . , d}.

We denote by M the collection of all functions Id → R and by C the collection of all
copulas. Then M is an ordered vector space under the coordinatewise defined linear
operations and order relation, and C is a convex subset of M. A map ϕ : C →M is said
to be a transformation.

Let Φ denote the collection of all transformations C → C and define the composition
◦ : Φ × Φ → Φ by letting (ϕ1 ◦ ϕ2)(C) := ϕ1(ϕ2(C)). The composition is associative.
The transformation ι ∈ Φ given by ι(C) := C satisfies ι ◦ ϕ = ϕ = ϕ ◦ ι for every ϕ ∈ Φ
and is called the identity on C. A transformation ϕ ∈ Φ is said to be an involution if
ϕ ◦ϕ = ι. Moreover, let Φ∗ ⊆ Φ be the set of all elements of Φ for which there exists an
inverse element in Φ. We thus obtain the following result:
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Lemma 2.1. (Φ, ◦) is a semigroup with neutral element ι. Moreover, (Φ∗, ◦) is a sub-
group of Φ that contains all involutions.

The term subgroup in Lemma 2.1 means that (Φ∗, ◦) is a subsemigroup of (Φ, ◦) and
a group.

We now introduce two elementary transformations, transpositions and partial reflec-
tions, on which we will focus our attention in the subsequent sections.

For i, j ∈ {1, . . . , d} with i 6= j we define the map πi,j : C →M by letting(
πi,j(C)

)
(u) := C

(
η{i,j}(u, uj ei + ui ej)

)
and, for k ∈ {1, . . . , d}, the map νk : C →M by letting(

νk(C)
)
(u) := C

(
ηk(u,1)

)
− C

(
ηk(u,1− u)

)
πi,j is called a transposition, and νk is called a partial reflection.

It turns out that transpositions and partial reflections map the collection of all copulas
into itself.

Lemma 2.2. Every transposition and every partial reflection is in Φ. Moreover, trans-
positions and partial reflections are involutions and hence in Φ∗.

P r o o f . Consider C ∈ C. It is evident that πi,j(C) is a copula for every i, j ∈ {1, . . . , d}
with i 6= j. Now, let k ∈ {1, . . . , d}. We prove that νk(C) is a copula as well. To this
end, consider first u,v ∈ Id such that u ≤ v. We then obtain

ηk
(
u, (1− vk) ek

)
≤ ηk

(
v, (1− uk) ek

)
and hence∑
L⊆{1,...,d}

(−1)d−|L|
(
νk(C)

)(
ηL(u,v)

)
=

∑
L⊆{1,...,d}

(−1)d−|L|
[
C

(
ηk

(
ηL(u,v),1

))
− C

(
ηk

(
ηL(u,v),1− ηL(u,v)

))]
= −

∑
L⊆{1,...,d}

(−1)d−|L| C
(
ηk

(
ηL(u,v),1− ηL(u,v)

))
= −

∑
L⊆{1,...,d}\{k}

(−1)d−|L| C
(
ηL∪{k}

(
u,

∑
l∈L

vl el + (1− uk) ek
))

−
∑

L⊆{1,...,d}\{k}

(−1)d−|L∪{k}| C
(
ηL∪{k}

(
u,

∑
l∈L

vl el + (1− vk) ek
))

=
∑

L⊆{1,...,d}\{k}

(−1)d−|L∪{k}| C
(
ηL∪{k}

(
u,ηk(v, (1− uk) ek)

))
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+
∑

L⊆{1,...,d}\{k}

(−1)d−|L| C
(
ηL

(
ηk(u, (1− vk) ek),v

))
=

∑
L⊆{1,...,d}\{k}

(−1)d−|L∪{k}| C
(
ηL∪{k}

(
ηk(u, (1− vk) ek),ηk(v, (1− uk) ek)

))
+

∑
L⊆{1,...,d}\{k}

(−1)d−|L| C
(
ηL

(
ηk(u, (1− vk) ek),ηk(v, (1− uk) ek)

))
=

∑
L⊆{1,...,d}

(−1)d−|L| C
(
ηL

(
ηk

(
u, (1− vk) ek

)
,ηk

(
v, (1− uk) ek

)))
≥ 0

which proves (i). The proofs of (ii) and (iii) are straightforward.
Furthermore, it is evident that every transposition is an involution. Consider again

k ∈ {1, . . . , d} and C ∈ C. Since C is a copula, we obtain(
νk(νk(C))

)
(u)

=
(
νk(C)

)(
ηk(u,1)

)
−

(
νk(C)

)(
ηk(u,1− u)

)
= C

(
ηk

(
ηk(u,1),1

))
− C

(
ηk

(
ηk(u,1),1− ηk(u,1)

))
−C

(
ηk

(
ηk(u,1− u),1

))
+ C

(
ηk

(
ηk(u,1− u),1− ηk(u,1− u)

))
= C

(
ηk(u,1)

)
− C

(
ηk(u,0)

)
− C

(
ηk(u,1)

)
+ C(u)

= C(u).

Therefore, every partial reflection is an involution. �

Lemma 2.2 states that every transposition and every partial reflection is in Φ∗. Thus,
there exists a smallest subgroup of Φ containing all transpositions, a smallest subgroup
of Φ containing all partial reflections, and a smallest subgroup of Φ containing all trans-
positions and all partial reflections.

3. THE GROUP Γ

In this section we construct the smallest subgroup of Φ that contains all transpositions,
the smallest subgroup of Φ that contains all partial reflections and the smallest subgroup
of Φ that contains all transpositions and all partial reflections.

For the composition of m ∈ N transformations ϕl ∈ Φ, l ∈ {1, . . . ,m}, we write

m

©
l=1

ϕl :=

{
ι m = 0
ϕm ◦©m−1

l=1 ϕl otherwise

and, for L = {1, . . . ,m} and a set of pairwise commuting ϕl ∈ Φ, l ∈ {1, . . . ,m}, we put

©
l∈L

ϕl :=
m

©
l=1

ϕl.
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Recall that the center of a group is the set of elements that commute with every element
of the group, and the center is a subgroup.

Let us first consider the smallest subgroup of Φ that contains all transpositions. A
transformation is called a permutation if it can be expressed as a finite composition of
transpositions. Let Γπ be the set of all permutations.

Theorem 3.1. Γπ is the smallest subgroup of Φ containing all transpositions. More-
over, |Γπ| = d!. If d = 2, then this subgroup is commutative; if d ≥ 3, then its center is
trivial.

P r o o f . First of all, since every composition of two permutations is a permutation,
Lemma 2.1 implies that Γπ is a subsemigroup of Φ with neutral element ι. Now, let
π ∈ Γπ. Then π can be expressed as a finite composition of transpositions. Let π∗ be
the composition of the same transpositions arranged in reverse order, then π∗ ∈ Γπ and
Lemma 2.2 yields

π ◦ π∗ = ι = π∗ ◦ π.
Thus, Γπ is a subgroup of Φ. A permutation is a transformation that rearranges the
arguments of a copula. Since there exist d! possibilities to rearrange d arguments, we
hence obtain the cardinality of Γπ.

For d = 2, we have Γπ = {ι, π1,2} which shows that the elements of Γπ commute.
Assume now that d ≥ 3. To prove that the center of Γπ is trivial, consider π ∈ Γπ\{ι}
and a copula C ∈ C. Since π 6= ι, there exist k, l ∈ {1, . . . , d} with k 6= l such that the
kth coordinate of C is the lth coordinate of π(C). Moreover, for j ∈ {1, . . . , d}, consider
the function Dj : Id → R given by

Dj(u) :=
d∏
i=1

ui +
d∏

i=1,i 6=j

(1− ui)
d∏
i=1

ui.

For every j ∈ {1, . . . , d} Dj is a copula; indeed for every u,v ∈ Id such that u ≤ v we
obtain ∑

L⊆{1,...,d}

(−1)d−|L|Dj

(
ηL(u,v)

)
=

[
1 +

d∏
i=1,i 6=j

(1− vi − ui)
] d∏
i=1

(vi − ui) ≥ 0

which proves (i); condition (ii) is obvious and (iii) follows from d ≥ 3. Then we obtain

π(Dk) = Dl

and for some m ∈ {1, . . . , d}\{k, l} (which exists since d ≥ 3) we further obtain(
πlm ◦ π ◦ πlm

)
(Dk) =

(
πlm ◦ π

)
(Dk) = πlm(Dl) = Dm 6= Dl = π(Dk).

This yields π ◦ πlm 6= πlm ◦ π. Thus, {ι} is the center of Γπ. �

Now, let us consider the smallest subgroup of Φ that contains all partial reflections.
A transformation is called a reflection if it can be expressed as a finite composition of
partial reflections. Let Γν be the set of all reflections.
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Lemma 3.2. The identity νk ◦ νl = νl ◦ νk holds for all k, l ∈ {1, . . . , d}.

P r o o f . Let k, l ∈ {1, . . . , d}, k 6= l, and C ∈ C. Then(
νk(νl(C))

)
(u)

=
(
νl(C)

)(
ηk(u,1)

)
−

(
νl(C)

)(
ηk(u,1− u)

)
= C

(
ηl

(
ηk(u,1),1

))
− C

(
ηl

(
ηk(u,1),1− ηk(u,1)

))
−C

(
ηl

(
ηk(u,1− u),1

))
+ C

(
ηl

(
ηk(u,1− u),1− ηk(u,1− u)

))
= C

(
η{k,l}(u,1)

)
− C

(
η{k,l}(u, 1 ek + (1− ul) el)

)
− C

(
η{k,l}(u, (1− uk) ek + 1 el)

)
+C

(
η{k,l}(u,1− u)

)
and hence νk ◦ νl = νl ◦ νk. Since every partial reflection is an involution (Lemma 2.2)
this proves the assertion. �

Thus, a reflection can be expressed as a finite composition of partial reflections that
includes every partial reflection at most once.

Example 3.3. The function D : Id → R given by

D(u) :=
d∏
i=1

ui +
d∏
i=1

u2
i (1− ui)

is a copula (see Dolati & Úbeda–Flores [2, Example 4.2]) which satisfies π(D) = D for
all π ∈ Γπ and ν̃(D) 6= ν̄(D) for all ν̃, ν̄ ∈ Γν such that ν̃ 6= ν̄.

Theorem 3.4. Γν is the smallest subgroup of Φ containing all partial reflections. More-
over, |Γν | = 2d. This subgroup is commutative and each of its elements is an involution.

P r o o f . Since every composition of two reflections is a reflection, Lemma 2.1 implies
that Γν is a subsemigroup of Φ with neutral element ι. Moreover, since partial reflec-
tions commute and are involutions, it follows that in fact all reflections commute and
are involutions. In particular, Γν is a subgroup of Φ.
Since every reflection can be expressed as a composition of partial reflections that in-
cludes every partial reflection at most once, the cardinality of Γν is at most 2d. That
|Γν | = 2d then follows from Example 3.3 since the application of the reflections in Γν to
D produces 2d distinct copulas. �

Finally, let us consider the smallest subgroup of Φ that contains all transpositions
and all partial reflections. A transformation is called a symmetry if it can be expressed
as a composition of a permutation and a reflection. Let Γ be the set of all symmetries.

We need the following lemma which includes results for the composition of a trans-
position and a partial reflection which is again a transformation in Φ.
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Lemma 3.5. Let i, j ∈ {1, . . . , d} with i 6= j and k ∈ {1, . . . , d}\{i, j}. Then

(1) πi,j ◦ νj = νi ◦ πi,j
(2) πi,j ◦ νi = νj ◦ πi,j
(3) πi,j ◦ νk = νk ◦ πi,j .

In particular, πi,j commutes neither with νi nor with νj .

P r o o f . Let C ∈ C. Then, we obtain(
πi,j(νj(C))

)
(u) =

(
νj(C)

)(
η{i,j}(u, uj ei + ui ej)

)
= C

(
ηj

(
η{i,j}(u, uj ei + ui ej),1

))
−C

(
ηj

(
η{i,j}(u, uj ei + ui ej),1− η{i,j}(u, uj ei + ui ej)

))
= C

(
η{i,j}(u, uj ei + 1 ej)

)
− C

(
η{i,j}(u, uj ei + (1− ui) ej)

)
=

(
πi,j(C)

)(
ηi(u,1)

)
−

(
πi,j(C)

)(
ηi(u,1− u)

)
=

(
νi(πi,j(C))

)
(u).

This proves (1). Analogously, we obtain (2). Moreover(
πi,j(νk(C))

)
(u)

=
(
νk(C)

)(
η{i,j}(u, uj ei + ui ej)

)
= C

(
ηk

(
η{i,j}(u, uj ei + ui ej),1

))
−C

(
ηk

(
η{i,j}(u, uj ei + ui ej),1− η{i,j}(u, uj ei + ui ej)

))
= C

(
η{i,j,k}(u, uj ei + ui ej + 1 ek)

)
− C

(
η{i,j,k}(u, uj ei + ui ej + (1− uk) ek)

)
=

(
πi,j(C)

)(
ηk(u,1)

)
−

(
πi,j(C)

)(
ηk(u,1− u)

)
=

(
νk(πi,j(C))

)
(u).

This proves (3). �

The following lemma comprises results for the composition of a permutation and a
reflection, and it also shows, that the intersection of the subgroups Γπ and Γν is trivial.

Lemma 3.6. (1) For every π ∈ Γπ and every ν ∈ Γν there exists some π̂ ∈ Γπ and
some ν̂ ∈ Γν such that

π ◦ ν = ν̂ ◦ π̂.

(2) For every π ∈ Γπ and every ν ∈ Γν there exists some π̂ ∈ Γπ and some ν̂ ∈ Γν such
that

ν ◦ π = π̂ ◦ ν̂

(3) Γπ ∩ Γν = {ι}.
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P r o o f . Assertions (1) and (2) immediately follow from Lemma 3.5. We now prove
(3). It is obvious that ι ∈ Γπ ∩ Γν . Assume that there exists some γ ∈ Γπ ∩ Γν such
that γ 6= ι and consider the copula D discussed in Example 3.3. Since γ ∈ Γπ we
have γ(D) = D, and since γ ∈ Γν and γ 6= ι we have γ(D) 6= ι(D) = D. Thus,
Γπ ∩ Γν = {ι}. �

Lemma 3.6 yields

Γ =
{
ϕ ∈ Φ

∣∣ ϕ = π ◦ ν for some π ∈ Γπ and some ν ∈ Γν
}

=
{
ϕ ∈ Φ

∣∣ ϕ = ν ◦ π for some π ∈ Γπ and some ν ∈ Γν
}

and the representation of a symmetry in terms of a permutation and a reflection is
unique which is again a consequence of Lemma 3.6.

Lemma 3.7. (1) For every γ ∈ Γ there exist unique π ∈ Γπ and ν ∈ Γν such that
γ = π ◦ ν.

(2) For every γ ∈ Γ there exist unique π ∈ Γπ and ν ∈ Γν such that γ = ν ◦ π.

The reflection which can be expressed as a composition of partial reflections that
includes every partial reflection exactly once is called total reflection. We denote the
total reflection by τ which differs from the notation used in Fuchs & Schmidt [3]. The
total reflection is an involution and we have

τ =
d

©
l=1

νl.

Moreover, set
Γτ := {ι, τ}.

Theorem 3.8. Γ is the smallest subgroup of Φ containing all transpositions and all
partial reflections. Moreover, |Γ| = d! 2d and the center of Γ is Γτ .

P r o o f . First of all, consider γ̂, γ̄ ∈ Γ. Then Lemma 3.7 provides the existence of
unique π̂, π̄ ∈ Γπ and ν̂, ν̄ ∈ Γν such that γ̂ = π̂ ◦ ν̂ and γ̄ = π̄ ◦ ν̄. With regard to
Lemma 3.6 there exists some π ∈ Γπ and some ν ∈ Γν such that ν̂ ◦ π̄ = π ◦ ν. This
yields

γ̂ ◦ γ̄ = π̂ ◦ ν̂ ◦ π̄ ◦ ν̄ = π̂ ◦ π ◦ ν ◦ ν̄.

Since π̂ ◦π ∈ Γπ and ν ◦ ν̄ ∈ Γν we obtain γ̂ ◦ γ̄ ∈ Γ, and thus, Lemma 2.1 implies that Γ
is a subsemigroup of Φ with neutral element ι. Furthermore, let π̂∗ ∈ Γπ be the inverse
element of π̂ and let ν̂∗ ∈ Γν be the inverse element of ν̂. Set γ̂∗ := ν̂∗ ◦ π̂∗. Then γ̂∗ ∈ Γ
and we obtain

γ̂ ◦ γ̂∗ = π̂ ◦ ν̂ ◦ ν̂∗ ◦ π̂∗ = ι = ν̂∗ ◦ π̂∗ ◦ π̂ ◦ ν̂ = γ̂∗ ◦ γ̂.

Thus, Γ is a subgroup of Φ and since Γπ ∩ Γν = {ι} we obtain |Γ| = |Γπ| · |Γν | = d! 2d.
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We now prove that the center Z(Γ) of Γ is Γτ . For the case d = 2 the proof is given
in Fuchs & Schmidt [3]. Further, let d ≥ 3. First of all, Lemma 3.5 implies

πi,j◦τ = πi,j◦
d

©
l=1

νl = ©
l∈{1,...,d}\{i,j}

νl◦πi,j◦νi◦νj = ©
l∈{1,...,d}\{i,j}

νl◦νj◦νi◦πi,j = τ◦πi,j

for all i, j ∈ {1, . . . , d} with i 6= j, and hence π ◦ τ = τ ◦ π for every π ∈ Γπ. Since
τ commutes with every reflection we obtain Γτ ⊆ Z(Γ). Moreover, since the center of
Γπ is trivial, we have Z(Γ) ∩ Γπ = {ι}, and thus, the subgroup Z(Γ) lies in the largest
subgroup Λ ⊆ Γ of Γ which satisfies Λ ∩ Γπ = {ι}. We now prove that Γν is the largest
subgroup satisfying this property. Note that Γν ∩Γπ = {ι} and assume that there exists
a subgroup Λ ⊆ Γ which satisfies Γν ⊂ Λ and Λ ∩ Γπ = {ι}. Then, there exists a γ ∈ Λ
such that γ = π ◦ ν with unique π ∈ Γπ\{ι} and ν ∈ Γν . Let ν∗ ∈ Λ be the inverse
element of ν. Since Λ is a subgroup we obtain

π = π ◦ ν ◦ ν∗ = γ ◦ ν∗ ∈ Λ

which contradicts to Λ ∩ Γπ = {ι}. Thus, Z(Γ) ⊆ Γν . Now, let ν ∈ Γν\Γτ . Then there
exists some K ⊆ {1, . . . , d} with 1 ≤ |K| ≤ d − 1 such that ν = ©l∈K νl. Moreover,
choose p ∈ K and q ∈ {1, . . . , d}\K. Lemma 3.5 then yields

πp,q ◦ ν = πp,q ◦ ©
l∈K

νl

= πp,q ◦ ©
l∈K\{p}

νl ◦ νp

= ©
l∈K\{p}

νl ◦ πp,q ◦ νp

= ©
l∈K\{p}

νl ◦ νq ◦ πp,q.

Further, consider the copula D discussed in Example 3.3. We then obtain(
πp,q ◦ ν

)
(D) =

(
©

l∈K\{p}
νl ◦ νq ◦ πp,q

)
(D)

=
(

©
l∈K\{p}

νl ◦ νq
)
(D)

6= ν(D)
=

(
ν ◦ πp,q

)
(D).

This yields πp,q ◦ ν 6= ν ◦ πp,q, and thus, Z(Γ) = Γτ . �

The construction of the group Γ extends that given in Fuchs & Schmidt [3] for the
case d = 2.

In addition to the subgroups Γπ, Γν and Γτ considered before, we define the set

Γπ,τ :=
{
γ ∈ Γ

∣∣ γ = π ◦ ϕ for some π ∈ Γπ and some ϕ ∈ Γτ
}
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which is of decisive importance in Sections 5 and 6. Since Γτ is the center of Γ, we have
Γπ,τ =

{
γ ∈ Γ

∣∣ γ = ϕ ◦ π for some ϕ ∈ Γτ and some π ∈ Γπ
}
, and this implies that

Γπ,τ is a subgroup of Γ.
As a counterpart to the total reflection τ , we denote by

ψ :=
d−1

©
i=1

πi,i+1

the total permutation, and consider the sets

Γψ := {γ ∈ Γ | γ =
m

©
l=1

ψ for some m ∈ {1, . . . , d}}

Γψ,ν := {γ ∈ Γ | γ = ϕ ◦ ν for some ϕ ∈ Γψ and some ν ∈ Γν}
Γψ,τ := {γ ∈ Γ | γ = ϕ1 ◦ ϕ2 for some ϕ1 ∈ Γψ and some ϕ2 ∈ Γτ}.

Lemma 3.9. Γψ, Γψ,ν and Γψ,τ are subgroups of Γ.

P r o o f . It follows from ©d
i=1 ψ = ι that Γψ is a subgroup of Γ. Since

νm =
d−(m−1)

©
l=1

ψ ◦ ν1 ◦
m−1

©
l=1

ψ

for all m ∈ {1, . . . , d}, and thus

νp ◦
q−p
©
l=1

ψ =
q−p
©
l=1

ψ ◦ νq

for all p, q ∈ {1, . . . , d} such that p ≤ q, we also obtain that Γψ,ν is a subgroup of Γ.
That Γψ,τ is a subgroup of Γ follows from the fact that Γτ is the center of Γ. �

Moreover, Γπ,τ ∩ Γψ,ν = Γψ,τ , Γπ ∩ Γψ,τ = Γψ, Γψ,τ ∩ Γν = Γτ and Γψ ∩ Γτ = {ι}.

Γ

� �

Γπ,τ Γψ,ν

� � � �

Γπ Γψ,τ Γν

� � � �

Γψ Γτ

� �

{ι}
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The following lemma, which will be needed in Section 6 below, discusses the trans-
formations in Γ with regard to convexity, and its proof is straightforward.

Lemma 3.10. Let C,D ∈ C and a ∈ (0, 1). Then the identity

γ
(
aC + (1− a)D

)
= a γ(C) + (1− a) γ(D)

holds for every γ ∈ Γ.

The group Γ is a representation of the hyperoctahedral group. This group also has a
different representation which has been used by Taylor [5, 6, 7]; see Section 7.

4. THE TOTAL REFLECTION OF A COPULA

In this section we define and give an explicit representation of the survival copula of a
copula.

For a copula C ∈ C the total reflection

τ(C)

is a copula and is called the survival copula with respect to C. The following theorem
provides an explicit representation of a reflection of a copula, and it illustrates that
the preceding definition of the survival copula is in accordance with that of Durante &
Sempi [1].

Theorem 4.1. Let ν ∈ Γν such that ν = ©l∈K νl for some K ⊆ {1, . . . , d} and let
C ∈ C. Then (

ν(C)
)
(u) =

∑
L⊆K

(−1)|K|−|L| C
(
ηL

(
ηK(u,1− u),1

))
.

In particular, (
τ(C)

)
(u) =

∑
L⊆{1,...,d}

(−1)d−|L| C
(
ηL

(
1− u,1

))
.

P r o o f . We prove the assertion by induction. Therefore, let i ∈ {1, . . . , d}. Then(
νi(C)

)
(u) = C

(
ηi(u,1)

)
− C

(
ηi(u,1− u)

)
=

∑
L⊆{i}

(−1)1−|L| C
(
ηL

(
ηi(u,1− u),1

))
.

Now, let k ∈ {2, . . . , d} and M ⊆ {1, . . . , d} such that |M | = k and assume that the
assertion is fulfilled for all L ⊆ M with 1 ≤ |L| ≤ k − 1. Without loss of generality, we
may assume that M = {1, . . . , k}. Then we obtain((

©
l∈{1,...,k}

νl
)
(C)

)
(u)
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=
((

©
l∈{1,...,k−1}

νl
)
(νk(C))

)
(u)

=
∑

L⊆{1,...,k−1}

(−1)k−1−|L| (
νk(C)

)(
ηL

(
η{1,...,k−1}(u,1− u),1

))

=
∑

L⊆{1,...,k−1}

(−1)k−1−|L| (
νk(C)

)( d∑
l=k

ul el +
∑

l∈{1,...,k−1}\L

(1− ul) el +
∑
l∈L

1 el
)

=
∑

L⊆{1,...,k−1}

(−1)k−1−|L| C
( d∑
l=k+1

ul el +
∑

l∈{1,...,k−1}\L

(1− ul) el +
∑

l∈L∪{k}

1 el
)

−
∑

L⊆{1,...,k−1}

(−1)k−1−|L| C
( d∑
l=k+1

ul el +
∑

l∈{1,...,k}\L

(1− ul) el +
∑
l∈L

1 el
)

=
∑

L⊆{1,...,k−1}

(−1)k−|L∪{k}| C
( d∑
l=k+1

ul el +
∑

l∈{1,...,k}\(L∪{k})

(1− ul) el +
∑

l∈L∪{k}

1 el
)

+
∑

L⊆{1,...,k−1}

(−1)k−|L| C
( d∑
l=k+1

ul el +
∑

l∈{1,...,k}\L

(1− ul) el +
∑
l∈L

1 el
)

=
∑

L⊆{1,...,k}

(−1)k−|L| C
( d∑
l=k+1

ul el +
∑

l∈{1,...,k}\L

(1− ul) el +
∑
l∈L

1 el
)

=
∑

L⊆{1,...,k}

(−1)k−|L| C
(
ηL

(
η{1,...,k}(u,1− u),1

))
.

This completes the proof. �

We now introduce two main copulas:

Example 4.2. (1) Fréchet–Hoeffding bound: The function M : Id → R given by

M(u) := min{ui | i ∈ {1, . . . , d}}

is a copula (see Nelsen [4, p. 47]) and satisfies γ(M) = M for every γ ∈ Γπ,τ . In
particular, τ(M) = M . Moreover, every copula C ∈ C satisfies C ≤M .

(2) Product copula: The function Π : Id → R given by

Π(u) :=
d∏
i=1

ui

is a copula (see Nelsen [4, p. 47]) and satisfies γ(Π) = Π for every γ ∈ Γ.

The following corollary is an immediate consequence of Theorem 4.1.

Corollary 4.3. Every ν ∈ Γν\Γτ satisfies (ν(M))(1/2) = 0 and (ν(Π))(1/2) = 1/2d.
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5. SUBGROUPS OF Γ WHICH PRESERVE CERTAIN PROPERTIES
OF COPULAS

In this section we focus on subgroups of Γ which preserve certain properties of copulas.

A copula C ∈ C is said to be symmetric if it satisfies

C
(
η{i,i+1}(u, ui+1 ei + ui ei+1)

)
= C(u)

for all u ∈ Id and all i ∈ {1, . . . , d− 1}. Thus, a copula C ∈ C is symmetric if and only
if π(C) = C for all π ∈ Γπ.

A transformation γ ∈ Γ is said to be symmetry preserving if, for any symmetric
C ∈ C, γ(C) is symmetric.

Theorem 5.1. A transformation γ ∈ Γ is symmetry preserving if and only if γ ∈ Γπ,τ .

P r o o f . It is obvious that every element of Γπ is symmetry preserving. Moreover, let
γ̂ ∈ Γπ,τ\Γπ and C ∈ C be symmetric. Then there exists a unique π̂ ∈ Γπ such that
γ̂ = π̂ ◦ τ and hence

π(γ̂(C)) = (π ◦ π̂ ◦ τ)(C) = (τ ◦ π ◦ π̂)(C) = τ(C) = (τ ◦ π̂)(C) = (π̂ ◦ τ)(C) = γ̂(C)

for all π ∈ Γπ. Thus, every element of Γπ,τ is symmetry preserving.
Now, let γ̂ ∈ Γ\Γπ,τ . Then Lemma 3.7 provides the existence of unique π̂ ∈ Γπ

and ν̂ ∈ Γν\Γτ such that γ̂ = ν̂ ◦ π̂ and ν̂ = ©l∈K νl for some K ⊆ {1, . . . , d} with
1 ≤ |K| ≤ d− 1. First of all, for every symmetric C ∈ C we obtain

γ̂(C) =
(
ν̂ ◦ π̂

)
(C) = ν̂(C) =

(
©
l∈K

νl
)
(C).

Moreover, choose p ∈ K and q ∈ {1, . . . , d}\K. Lemma 3.5 then yields(
πp,q ◦ γ̂

)
(C) =

(
πp,q ◦ ©

l∈K
νl

)
(C)

=
(
πp,q ◦ ©

l∈K\{p}
νl ◦ νp

)
(C)

=
(

©
l∈K\{p}

νl ◦ πp,q ◦ νp
)
(C)

=
(

©
l∈K\{p}

νl ◦ νq ◦ πp,q
)
(C)

=
(

©
l∈K\{p}

νl ◦ νq
)
(C)

for every symmetric C ∈ C. Further, consider the copula D discussed in Example 3.3.
We then obtain(

πp,q ◦ γ̂
)
(D) =

(
©

l∈K\{p}
νl ◦ νq

)
(D) 6=

(
©
l∈K

νl

)
(D) = γ̂(D).

Thus, the elements of Γπ,τ are the only symmetry preserving symmetries. �

A transformation γ ∈ Γ is said to be order preserving if, for any C,D ∈ C, C ≤ D
implies γ(C) ≤ γ(D).
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Theorem 5.2. (1) Let d = 2. Then a transformation γ ∈ Γ is order preserving if and
only if γ ∈ Γπ,τ .

(2) Let d ≥ 3. Then a transformation γ ∈ Γ is order preserving if and only if γ ∈ Γπ.

P r o o f . First of all, assertion (1) follows immediately from Fuchs & Schmidt [3].
Now, we want to prove (2). It is obvious that every element of Γπ is order preserving.

Moreover, let γ ∈ Γ\Γπ,τ . Then Lemma 3.7 provides the existence of unique π ∈ Γπ

and ν ∈ Γν\Γτ such that γ = ν ◦ π. The copulas M and Π satisfy γ(Π) = Π and
γ(M) = (ν ◦ π)(M) = ν(M) as well as Π ≤M . However, Corollary 4.3 provides

(γ(M))(1/2) = (ν(M))(1/2) = 0 <
1
2d

= Π(1/2) = (γ(Π))(1/2).

Thus, the elements of Γ\Γπ,τ are not order preserving.
Furthermore, let d be odd and γ ∈ Γπ,τ\Γπ. Then there exists a unique π ∈ Γπ such

that γ = τ ◦ π. Consider now the function D : Id → R given by

D(u) :=
d∏
i=1

ui +
d∏
i=1

ui(1− ui).

D is a copula (see Dolati & Úbeda–Flores [2, Example 4.5]) that is symmetric and
satisfies (

τ(D)
)
(u) =

d∏
i=1

ui + (−1)d
d∏
i=1

ui(1− ui).

We then have Π ≤ D but γ(D) = (τ ◦ π)(D) = τ(D) ≤ Π = γ(Π). Thus, the elements
of Γπ are the only order preserving symmetries.

Finally, let d be even and γ ∈ Γπ,τ\Γπ. Then there exists a unique π ∈ Γπ such that
γ = τ ◦ π. For j ∈ {1, . . . , d}, consider the copula

Dj(u) :=
d∏
i=1

ui +
d∏

i=1,i 6=j

(1− ui)
d∏
i=1

ui

discussed in the proof of Theorem 3.1. Then, there exists some k ∈ {1, . . . , d} such that
π(Dj) = Dk and Dk satisfies

(
νl(Dk)

)
(u) =

d∏
i=1

ui −
d∏

i=1,i 6=k

(1− ui)
d∏
i=1

ui

for all l 6= k and νk(Dk) = Dk. Furthermore,

(
τ(Dk)

)
(u) =

d∏
i=1

ui + (−1)d−1
d∏

i=1,i 6=k

(1− ui)
d∏
i=1

ui.

We then have Π ≤ Dj but γ(Dj) = (τ ◦ π)(Dj) = τ(Dk) ≤ Π = γ(Π). Thus, the
elements of Γπ are the only order preserving symmetries. �
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For C,D ∈ C we write C � D if C ≤ D and τ(C) ≤ τ(D). Then � is an order relation
and is called concordance order. Obviously, every copula C ∈ C satisfies C �M .

A transformation γ ∈ Γ is said to be concordance order preserving if, for any C,D ∈ C,
C � D implies γ(C) � γ(D).

Theorem 5.3. A transformation γ ∈ Γ is concordance order preserving if and only if
γ ∈ Γπ,τ .

P r o o f . It is obvious that every element of Γπ,τ is concordance order preserving. Now,
let γ ∈ Γ\Γπ,τ . Then Lemma 3.7 provides the existence of unique π ∈ Γπ and ν ∈ Γν\Γτ
such that γ = ν ◦ π. The copulas M and Π satisfy γ(Π) = Π and γ(M) = (ν ◦ π)(M) =
ν(M) as well as Π �M . However, Corollary 4.3 provides

(γ(M))(1/2) = (ν(M))(1/2) = 0 <
1
2d

= Π(1/2) = (γ(Π))(1/2).

Thus, the elements of Γπ,τ are the only concordance order preserving symmetries. �

Remark 5.4. For the case d = 2 pointwise order is the same as concordance order.
Thus, the subgroup of all order preserving symmetries and the subgroup of all concor-
dance order preserving symmetries coincide as stated in Theorems 5.2 and 5.3.

6. MEASURES OF CONCORDANCE

In this section, we study the group Γ with respect to measures of concordance.

There is a rich literature on measures of concordance for multivariate copulas. For
example, Taylor [5, 6, 7] and Dolati & Úbeda–Flores [2] proposed definitions of a measure
of concordance which are closely related. Taylor’s definition involves the group (Γ̃, �) of
transformations on the unit hypercube (see Section 7), and that of Dolati and Úbeda–
Flores employs the partial reflections of a copula.

In the spirit of Taylor [5, 6, 7] and Dolati & Úbeda–Flores [2], we propose here a
quite general definition of a measure of concordance for multivariate copulas, which is
based on the group (Γ, ◦):

A function κ : C → [−1, 1] is said to be a measure of concordance of degree d if it has
the following properties:

(i) κ(M) = 1.
(ii) The identity κ(π(C)) = κ(C) holds for every C ∈ C and every π ∈ Γπ.
(iii) The identity κ(τ(C)) = κ(C) holds for every C ∈ C.
(iv) The identity ∑

ν∈Γν

κ(ν(C)) = 0

holds for every C ∈ C.
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Property (iv) implies that κ(Π) = 0.

Except for these basic properties of a measure of concordance, many authors require
additional properties. Among those, monotonicity and continuity are the most promi-
nent ones. Some authors like Taylor [5, 6, 7] and Dolati & Úbeda–Flores [2] also consider
consistency of measures of concordance for copulas of different dimensions. For the pur-
pose of the following discussion of measures of concordance, however, we do not need
any of these additional properties, and this is why we omit them here although they
might be most useful in a different context.

The previous definition of a measure of concordance is in accordance with that given
in Fuchs & Schmidt [3] for d = 2: In that case, we have ν2 = τ ◦ ν1, which yields

0 = κ(C) + κ(ν1(C)) + κ(ν2(C)) + κ(τ(C))
= κ(C) + κ(ν1(C)) + κ(τ(ν1(C))) + κ(τ(C))
= κ(C) + κ(ν1(C)) + κ(ν1(C)) + κ(C)

and hence κ(ν1(C)) = −κ(C) for all C ∈ C.

The map β : C → [−1, 1] given by

β(C) :=
1

2d−1 − 1

(
2d−1

[
C(1/2) + (τ(C))(1/2)

]
− 1

)
is called Blomqvist’s beta. This is the definition proposed by Úbeda–Flores [8]. The
following result is essentially due to Taylor [5].

Lemma 6.1. Blomqvist’s beta is a measure of concordance.

P r o o f . It is obvious that β fulfills properties (i),(ii) and (iii). We now prove (iv).
To this end, consider C ∈ C and put D := 1/2d

∑
ν∈Γν ν(C). Since C is convex

we have D ∈ C. Moreover, with regard to Lemma 3.10 D satisfies νi(D) = D for all
i ∈ {1, . . . , d} which yields D(1/2) = (νi(D))(1/2) = D(ηi(1/2,1))−D(1/2), and thus,
2D(1/2) = D(ηi(1/2,1)) for all i ∈ {1, . . . , d}. Induction then yields 2dD(1/2) = 1
and hence ∑

ν∈Γν

(
ν(C)

)
(1/2) = 1.

We further obtain∑
ν∈Γν

β
(
ν(C)

)
=

∑
ν∈Γν

1
2d−1 − 1

(
2d−1

[(
ν(C)

)
(1/2) +

(
(τ ◦ ν)(C)

)
(1/2)

]
− 1

)
=

1
2d−1 − 1

(
2d−1

[ ∑
ν∈Γν

(
ν(C)

)
(1/2) +

∑
ν∈Γν

(
(τ ◦ ν)(C)

)
(1/2)

]
− 2d

)
=

1
2d−1 − 1

(
2d−1

(
1 + 1

)
− 2d

)
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= 0.

This proves the assertion. �

A transformation γ ∈ Γ is said to be concordance preserving if it satisfies κ(γ(C)) =
κ(C) for every measure of concordance κ and every C ∈ C.

Theorem 6.2. A transformation γ ∈ Γ is concordance preserving if and only if γ ∈ Γπ,τ .

P r o o f . It is obvious that every element of Γπ,τ is concordance preserving. Now,
consider γ ∈ Γ\Γπ,τ and note that

β(M) = 1.

We want to prove that β
(
γ(M)

)
6= 1. First of all, Lemma 3.7 provides the existence of

unique π ∈ Γπ and ν ∈ Γν\Γτ such that γ = ν ◦ π. Moreover, since τ is in the center of
Γ we have

(τ ◦ γ)(M) = (γ ◦ τ)(M) = γ(M) = (ν ◦ π)(M) = ν(M)

and Corollary 4.3 provides(
(τ ◦ γ)(M)

)
(1/2) = (γ(M))(1/2) = (ν(M))(1/2) = 0.

We further obtain

β
(
γ(M)

)
=

1
2d−1 − 1

(
2d−1

[(
γ(M)

)
(1/2) +

(
(τ ◦ γ)(M)

)
(1/2)

]
− 1

)
= − 1

2d−1 − 1
.

Thus, the elements of Γπ,τ are the only concordance preserving symmetries. �

Theorem 6.2 emphasizes once more the particular role of the transformations which
belong to the subgroup Γπ,τ : They are the only concordance preserving symmetries and,
as noted in Section 5, the only symmetry and concordance order preserving symmetries.

7. ANOTHER POINT OF VIEW

Until now, we have deliberately avoided the use of results or even notions from measure
and probability theory. In the present section we sketch, without going too far into the
details, a measure theoretic and probabilistic approach which provides some additional
insights into the properties of the group of transformations.

First of all, we note that the hyperoctahedral group has another representation which
is geometric and quite popular: Consider the collection of all transformations Id → Id

equipped with the composition � and the identity ι̃. Then, proceeding as in Section 3,
one can show that there is a smallest group (Γ̃, �) containing the transformations π̃i,j :
Id → Id and ν̃k : Id → Id with i, j, k ∈ {1, . . . , d} and i 6= j, given by
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π̃i,j(u) := η{i,j}(u, uj ei + ui ej)
ν̃k(u) := ηk(u,1− u).

The groups (Γ, ◦) and (Γ̃, �) are related to each other by the following result:

Theorem 7.1. There exists a unique isomorphism T : (Γ, ◦) → (Γ̃, �) satisfying T (πi,j)
= π̃i,j and T (νk) = ν̃k for all i, j, k ∈ {1, . . . , d} such that i 6= j.

To simplify the notation, we put γ̃ := T (γ) for every γ ∈ Γ.

Since the transformations in Γ̃ are continuous and hence measureable, they can be
used to transform probability measures on the Borel σ–field B(Id) or random vectors
from some probability space into the measureable space (Id,B(Id)).

Let us first consider transformations of probability measures. A probability mea-
sure Q : B(Id) → I is said to be a copula measure if the identity Q[×di=1Bi] = λ[Bj ]
holds for every collection of Borel sets {Bi}i∈{1,...,d} ⊆ B(I) satisfying Bi = I for all
i ∈ {1, . . . , d}\{j}; here λ denotes the Lebesgue measure on B(I). Let Q denote the col-
lection of all copula measures on B(Id). The following result, which relies on the measure
extension theorem, is a refinement of the correspondence theorem relating distribution
functions on Rd to probability measures on B(Rd):

Theorem 7.2. There exists a one–to–one correspondence between C and Q. Moreover,
every corresponding pair of a copula C ∈ C and a copula measure Q ∈ Q satisfies
C(u) = Q[[0,u]] for all u ∈ Id.

It can also be shown that the collection Q is stable under transformations of the
group Γ̃:

Theorem 7.3. Let Q ∈ Q be a copula measure. Then, for every γ̃ ∈ Γ̃, the image
measure Qγ̃ of Q under γ̃ satisfies Qγ̃ ∈ Q.

Let us now consider transformations of random vectors. The following result, which
relies on Theorems 7.1 and 7.2, asserts that, for every γ ∈ Γ, the transformation γ(C)
of a copula C ∈ C is precisely the distribution function of the transformation γ̃ ◦U of a
random vector U with distribution function C:

Theorem 7.4. Let C ∈ C be a copula with copula measure Q ∈ Q. Then (Id,B(Id), Q)
is a probability space and the identity map U : (Id,B(Id), Q) → (Id,B(Id)) is a random
vector which satisfies Q[{U ≤ u}] = C(u) for all u ∈ Id. Moreover, the identity(

γ(C)
)
(u) = Q[{γ̃ ◦U ≤ u}]

holds for all u ∈ Id and all γ ∈ Γ.

By Theorem 3.8, we know that γ(C) is a copula. This fact could also be established
by using first Theorem 7.3 to prove that Qγ̃ is a copula measure, then Theorem 7.2 to
prove that the map

u 7→ Q[{γ̃ ◦U ≤ u}] = Qγ̃◦U[[0,u]] = (QU)γ̃ [[0,u]] = Qγ̃ [[0,u]]
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is a copula, and finally the identity of Theorem 7.4 to prove that γ(C) is a copula.

In conclusion, the investigation of the group Γ acting on C could also be based on the
group Γ̃ acting on Id, but as shown above, this approach requires several results from
measure and probability theory.
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