Previous |  Up |  Next

Article

Keywords:
consensus clustering; differential evolution; ensemble; data
Summary:
Consensus clustering algorithms are used to improve properties of traditional clustering methods, especially their accuracy and robustness. In this article, we introduce our approach that is based on a refinement of the set of initial partitions and uses differential evolution algorithm in order to find the most valid solution. Properties of the algorithm are demonstrated on four benchmark datasets.
References:
[1] Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. 2001 ACM SIGMOD International Conference on Management of data 27 (1998), 2, pp. 94-105.
[2] Bache, K., Lichman, M.: UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml
[3] Bailey, K. D.: Typologies and Taxonomies: An Introduction to Classification Techniques. Sage Publications Inc., Los Angeles 1994.
[4] Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York 1981. MR 0631231 | Zbl 0503.68069
[5] Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Sys. Man Cyber., Part A: Systems and Humans 38 (2008), 1, 218-237. DOI 10.1109/TSMCA.2007.909595
[6] Dempster, A. P., Laird, N. M., Rubin, D. B.: Maximum likelihood from incomplete data via the em algorithm. J. Roy. Stat. Soc. Ser. B 39 (1977), 1, 1-38. MR 0501537 | Zbl 0364.62022
[7] Dimitriadou, E.: cclust: Convex Clustering Methods and Clustering Indexes, 2012. URL http://CRAN.R-project.org/package=cclust
[8] Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19 (2003), 9, 1090-2003. DOI 10.1093/bioinformatics/btg038
[9] Ester, M., Kriegel, H. P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. 2nd International Conference on Knowledge Discovery and Data Mining 1996, pp. 226-231.
[10] Fern, X., Brodley, C.: Solving cluster ensemble problems by bipartite graph partitioning. In: Proc. 21st International Conference on Machine learning 2004, pp. 36-43.
[11] Fraley, C., Raftery, A. E.: Model-based clustering, discriminant analysis and density estimation. J. Amer. Statist. Assoc. 97 (2002), 611-631. DOI 10.1198/016214502760047131 | MR 1951635 | Zbl 1073.62545
[12] Fraley, C., Raftery, A. E.: MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering. Techn. Report 504, University of Washington, Department of Statistics, 2006.
[13] Ghaemi, R., Sulaiman, N., Ibrahim, H., Mustapha, N.: A survey: Clustering ensembles techniques. In: Proc. International Conference on Computer, Electrical, and Systems Science, and Engineering (CESSE) 38 (2009), pp. 644-653.
[14] Ghosh, J., Acharya, A.: Cluster ensembles. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 1 (2011), 4, 305-315.
[15] Gould, S. J.: Full House: The Spread of Excellence from Plato to Darwin. Harmony, New York 1996.
[16] Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity methods: Part i. SIGMOD Record 31 (2002), 2, 40-45. DOI 10.1145/565117.565124
[17] Handl, J., Knowles, J.: Multi-objective clustering and cluster validation. In: Multi-Objective Machine Learning (Studies in Computational Intelligence, Vol, 16), Springer, Berlin 2006, pp. 21-47.
[18] Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans. Evolutionary Comput. 11 (2007), 56-76. DOI 10.1109/TEVC.2006.877146
[19] Handl, J., Knowles, J., Kell, D.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21 (2005), 15, 3201-3212. DOI 10.1093/bioinformatics/bti517
[20] Hartigan, J., Wong, M.: A k-means clustering algorithm. Applied Statistics 28 (1979), 100-108. DOI 10.2307/2346830 | Zbl 0447.62062
[21] Hornik, K., Feinerer, I., Kober, M., Buchta, C.: Spherical $k$-means clustering. J. Statist. Software 50 (2012), 10, 1-22. DOI 10.18637/jss.v050.i10
[22] Hruschka, E., Campello, R., Freitas, A., Carvalho, A. de: A survey of evolutionary algorithms for clustering. IEEE Trans. Sys. Man Cyber. Part C: Applications and Reviews 39 (2009), 2, 133-155. DOI 10.1109/TSMCC.2008.2007252
[23] Jain, A. K.: Data clustering: 50 years beyond k-means. Pattern Recognition Lett. 31 (2010), 8, 651-666.
[24] Jain, A. K., Murty, M. N., Flynn, P. J.: Data clustering: A review. ACM Comput. Surveys 31 (1999), 3, 316-323.
[25] Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab - an S4 package for kernel methods in R. J. Statist. Software 11 (2004), 9, 1-20.
[26] Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: Applications in vlsi domain. In: Proc. Design and Automation Conference, 1997, pp. 526-529.
[27] Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York 1990. MR 1044997
[28] Krishna, K., Murty, M. Narasimha: Genetic k-means algorithm. Trans. Sys. Man Cyber. Part B 29 (1999), 3, 433-439. DOI 10.1109/3477.764879
[29] Kwedlo, W.: A clustering method combining differential evolution with the k-means algorithm. Pattern Recognition Letters 32 (2011), 12, 1613-1621. DOI 10.1016/j.patrec.2011.05.010
[30] MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability 1 (1967), pp. 281-297. MR 0214227 | Zbl 0214.46201
[31] Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.: cluster: Cluster Analysis Basics and Extensions, 2013. R package version 1.14.4.
[32] Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52 (2003), 1-2, 91-118. DOI 10.1023/A:1023949509487 | Zbl 1039.68103
[33] Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: DEoptim: An R package for global optimization by differential evolution. J. Statist. Software 40 (2011), 6, 1-26. DOI 10.18637/jss.v040.i06
[34] Murthy, C., Chowdhury, N.: In search of optimal clusters using genetic algorithms. Pattern Recognition Lett. 17 (1996), 8, 825-832.
[35] Pal, S. K., Majumder, D. D.: Fuzzy sets and decision making approaches in vowel and speaker recognition. IEEE Trans. Sys. Man Cyber. 7 (1977), 625-629. DOI 10.1109/TSMC.1977.4309789
[36] Paterlini, S., Krink, T.: Differential evolution and particle swarm optimisation in partitional clustering. Comput. Statist. Data Anal. 50 (2006), 5, 1220-1247. DOI 10.1016/j.csda.2004.12.004 | MR 2224370
[37] Price, K. V., Storn, R. M., Lampinen, J. A.: Differential Evolution: A Practical Approach to Global Optimization. Springer-Verlag, Berlin 2006. MR 2191377 | Zbl 1186.90004
[38] Raghavan, V., Birchand, K.: A clustering strategy based on a formalism of the reproductive process in a natural system. In: Proc. Second International Conference on Information Storage and Retrieval, 1979, pp. 10-22.
[39] R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna 2012. URL http://www.R-project.org/
[40] Shi, J., Malik, J.: Normalized cuts and image segmentation. In: IEEE Trans. Pattern Analysis and Machine Intelligence 22 (2000), 8, 888-905.
[41] Simovici, D. A., Djeraba, Ch.: Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics. Advanced information and knowledge processing. Springer, London 2008. MR 2451001 | Zbl 1151.68386
[42] Simpson, T. I., Armstrong, J. D., Jarman, A. P.: Merged consensus clustering to assess and improve class discovery with microarray data. BMC Bioinform. 11 (2010), 11-590. DOI 10.1186/1471-2105-11-590
[43] Sneath, P. H.: The application of computers to taxonomy. Journal of general microbiology 17 (1957), 1, 201-226. DOI 10.1099/00221287-17-1-201
[44] Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11 (1997), 4, 341-359. DOI 10.1023/A:1008202821328 | MR 1479553 | Zbl 0888.90135
[45] Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining partitionings. In: Proc. 11th National Conference On Artificial Intelligence, NCAI, Edmonton, Alberta 2002, pp. 93-98. MR 1991087
[46] Topchy, A., Jain, A., Punch, W.: A mixture model of clustering ensembles. In: Proc. SIAM International Conference on Data Mining 2004, pp. 22-24.
[47] Trotter, W. M.: Combinatorics and Partially Ordered Sets. The Johns Hopkins University Press, Baltimore 1992. MR 1169299 | Zbl 0764.05001
[48] Tvrdík, J., Křivý, I.: Differential evolution with competing strategies applied to partitional clustering. Lecture Notes Comput. Sci. 7269 (2012), 136-144. DOI 10.1007/978-3-642-29353-5_16
[49] Wang, P., Domeniconi, C., Laskey, K.: Nonparametric bayesian clustering ensembles. Lecture Notes Comput. Sci. 6323 (2010), 3, 435-450. DOI 10.1007/978-3-642-15939-8_28
[50] Wang, H., Shan, H., Banerjee, A.: Bayesian cluster ensembles. Stat. Anal. Data Min. 4 (2011), 1, 54-70. DOI 10.1002/sam.10098 | MR 2814500
[51] Wikipedia: Partition of a set. http://en.wikipedia.org/wiki/Partition_of_a_set
[52] Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Networks 16 (2005), 3, 645-678. DOI 10.1109/TNN.2005.845141
[53] Zahn, Ch. T.: Graph-theoretic methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20 (1971), 31, 68-86.
Partner of
EuDML logo