[1] Bradley, A. P.:
The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (1997), 1145-1159.
DOI 10.1016/S0031-3203(96)00142-2
[2] Drummond, C., Holte, R. C.:
Cost curves: An improved method for visualizing classifier performance. Machine Learning 65 (2006) 95-130.
DOI 10.1007/s10994-006-8199-5
[4] Hand, D. J.:
Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning 77 (2009), 103-123.
DOI 10.1007/s10994-009-5119-5
[5] Hand, D. J., Till, R. J.:
A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning 45 (2001), 171-186.
DOI 10.1023/A:1010920819831 |
Zbl 1007.68180
[6] Hanley, J. A.: Receiver operating characteristic (ROC) methodology: the state of the art. Critical Reviews in Diagnostic Imaging 29 (1989), 307-335.
[7] Hernández-Orallo, J., Flach, P., Ferri, C.: Brier curves: a new cost-based visualisation of classifier performance. In: Proc. 28th International Conference on Machine Learning (ICML-11) (L. Getoor and T. Scheffer, eds.), ACM, New York 2011, pp. 585-592.
[8] Klawonn, F., Höppner, F., May, S.: An alternative to ROC and AUC analysis of classifiers. In: Advances in Intelligent Data Analysis X, (J. Gama, E. Bradley, and J. Hollmén, eds.), Springer, Berlin 2011, p. 210-221.
[9] Krzanowski, W. J., Hand, D. J.:
ROC Curves for Continuous data. Chapman and Hall, London 2009.
MR 2522628 |
Zbl 1288.62005