Previous |  Up |  Next

Article

Keywords:
partial bicomodule algebra; partial twisted smash product; partial bicoinvariant; Morita context
Summary:
We first introduce the notion of a right generalized partial smash product and explore some properties of such partial smash product, and consider some examples. Furthermore, we introduce the notion of a generalized partial twisted smash product and discuss a necessary condition under which such partial smash product forms a Hopf algebra. Based on these notions and properties, we construct a Morita context for partial coactions of a co-Frobenius Hopf algebra.
References:
[1] Alves, M. M. S., Batista, E.: Enveloping actions for partial Hopf actions. Commun. Algebra 38 (2010), 2872-2902. DOI 10.1080/00927870903095582 | MR 2730285 | Zbl 1226.16022
[2] Alves, M. M. S., Batista, E.: Globalization theorems for partial Hopf (co)actions, and some of their applications. Groups, Algebras and Applications. Proceedings of XVIII Latin American algebra colloquium, São Pedro, Brazil, 2009 C. Polcino Milies Contemporary Mathematics 537 American Mathematical Society, Providence (2011), 13-30. DOI 10.1090/conm/537/10564 | MR 2799089 | Zbl 1232.16020
[3] Alves, M. M. S., Batista, E.: Partial Hopf actions, partial invariants and a Morita context. Algebra Discrete Math. 2009 (2009), 1-19. MR 2640384 | Zbl 1199.16059
[4] Beattie, M., Dăscălescu, S., Raianu, Ş.: Galois extensions for co-Frobenius Hopf algebras. J. Algebra 198 (1997), 164-183. DOI 10.1006/jabr.1997.7146 | MR 1482980 | Zbl 0901.16017
[5] Caenepeel, S., Janssen, K.: Partial (co)actions of Hopf algebras and partial Hopf-Galois theory. Commun. Algebra 36 (2008), 2923-2946. DOI 10.1080/00927870802110334 | MR 2440292 | Zbl 1168.16021
[6] Dokuchaev, M., Exel, R.: Associativity of crossed products by partial actions, enveloping actions and partial representations. Trans. Am. Math. Soc. 357 (2005), 1931-1952. DOI 10.1090/S0002-9947-04-03519-6 | MR 2115083 | Zbl 1072.16025
[7] Dokuchaev, M., Ferrero, M., Paques, A.: Partial actions and Galois theory. J. Pure Appl. Algebra 208 (2007), 77-87. DOI 10.1016/j.jpaa.2005.11.009 | MR 2269829 | Zbl 1142.13005
[8] Exel, R.: Circle actions on $C^{*}$-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence. J. Funct. Anal. 122 (1994), 361-401. DOI 10.1006/jfan.1994.1073 | MR 1276163
[9] Lomp, C.: Duality for partial group actions. Int. Electron. J. Algebra (electronic only) 4 (2008), 53-62. MR 2417468 | Zbl 1175.16020
[10] Sweedler, M. E.: Hopf Algebras. Mathematics Lecture Note Series W. A. Benjamin, New York (1969). MR 0252485 | Zbl 0203.31601
Partner of
EuDML logo