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Abstract. We first introduce the notion of a right generalized partial smash product
and explore some properties of such partial smash product, and consider some examples.
Furthermore, we introduce the notion of a generalized partial twisted smash product and
discuss a necessary condition under which such partial smash product forms a Hopf algebra.
Based on these notions and properties, we construct a Morita context for partial coactions
of a co-Frobenius Hopf algebra.
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Introduction

Partial group actions were first defined by Exel in the context of operator algebras

and they turned out to be a powerful tool in the study of C∗-algebras generated

by partial isometries on a Hilbert space in [8]. The developments originated by the

definition of partial group actions, and soon became an independent topic of interest

in ring theory in [6]. Now, the results are formulated in a purely algebraic way,

independently of the C∗ algebraic techniques which originated them.

Partial Hopf actions were motivated by an attempt to generalize the notion of

partial Galois extensions of commutative rings in [7] to a broader context. The

definitions of partial Hopf actions and coactions were introduced by Caenepeel and

Janssen in [5], using the notions of partial entwining structures. In particular, partial

actions of a group G determine partial actions of the group algebra kG in a natural

way. In the same article, the authors also introduced the concept of partial smash

The work was supported by the NSF of Jiangsu Province (No.BK2012736) and the Fund
of Science and Technology Department of Guizhou Province (No. 2014GZ81365).

767



product, which in the case of the group algebra kG turns out to be the crossed

product by a partial action A ⋊α G. Further developments in the theory of partial

Hopf actions were done by Lomp in [9], Alves and Batista extended several results

from the theory of partial group actions to the Hopf algebra setting in [1]. They also

constructed a Morita context relating the fixed point subalgebra for partial actions

of finite dimensional Hopf algebras, and constructed the partial smash product in [3].

Motivated by the above ideas, this paper is organized as follows. In Section 2, we

study the generalized partial smash product A#H
l Bop where A is a left H-module

algebra and Bop is a left partial H-comodule algebra and explore some properties of

the generalized partial smash products A#H
l Bop and A#L

l B
op (see Proposition 2.5).

In Section 3, we first study the generalized partial smash product and discuss a nec-

essary condition for A ⋆ H∗ to be a Hopf algebra (see Theorem 3.5). In Section 4,

we show a Morita context relating the generalized partial smash product A ⋆ H∗rat

and the partial bicoinvariants AbicoH for co-Frobenius Hopf algebra H , where A is

a partial H-bicomodule algebra (see Theorem 4.4).

1. Preliminaries

Throughout the paper, we let k be a fixed field and we work over k. Let M be

a vector space over k and let idM denote the usual identity map. Let ⊗ be over k.

For the comultiplication ∆ in a coalgebra C with a counit εC , we use the Sweedler-

Heyneman’s notation (see Sweedler [10]): ∆(c) = c1 ⊗ c2, for any c ∈ C.

We recall some basic results and propositions that we will need later from Alves

and Batista [3] and Beattie et al. [4].

1.1. Right partial comodule algebra. Let H be a Hopf algebra and A an

algebra. A is said to be a right partial H-comodule algebra if there exists a k-linear

map ̺ : A → A ⊗H which is a partial comodule structure, such that the following

conditions are satisfied:

(idA ⊗ ε)̺r = idA;

(̺r ⊗ idH)̺r(a) = (̺(1A)⊗ idH)(idA ⊗∆)̺r(a);

̺r(ab) = ̺r(a)̺r(b)

for all a, b ∈ A; we use the standard notation ̺r(a) = a[0] ⊗ a[1] for a ∈ A.

1.2. Integral. Let H be a Hopf algebra. A left (right) integral for H is a k-linear

form λ ∈ H∗ such that, for all f ∈ H∗ (g ∈ H∗),

fλ = f(1)λ (λg = g(1)λ).
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Recall that H∗rat is the unique maximal left (right) rational submodule of the left

(right) H∗-module H∗. Since H∗rat is an ideal of H∗ equal to the sum of all finite

dimensional left (right) ideals of H∗, cf. [10], H∗rat is an H∗-H∗-bimodule.

1.3. Co-Frobenius Hopf algebra. A Hopf algebra H is called co-Frobenius if

H has a nonzero space of left (right) integral
∫

l

( ∫

r

)

.

Let H be a co-Frobenius Hopf algebra. We have:

(1) There exists a group like element x of H such that λh∗ = 〈h∗, x〉λ, for all

h∗ ∈ H∗; λ(S(h)) = λ(hx) and λ(S−1(h)) = λ(xh), for all h ∈ H .

(2) H∗ is a free left (right)H-module for action defined for any f ∈ H∗ and h, l ∈ H ,

by (h ⇀ f)(l) = f(lh) ((f ↼ h)(l) = f(hl)). The subalgebra H∗rat of H∗ is

a H-H-bimodule under these actions.

2. Generalized partial smash product

Now, we give the definition of a left partial H-comodule algebra.

Definition 2.1. Let H be a Hopf algebra and A an algebra. A is called a left

partial H-comodule algebra if there exists a k-linear map ̺l : A→ H ⊗A such that

the following conditions are satisfied:

(ε⊗ idA)̺
l = idA;

(idH ⊗ ̺l)̺l(a) = (∆⊗ idA)̺
l(a)(idH ⊗ ̺l(1A));

̺l(ab) = ̺l(a)̺l(b)

for all a, b ∈ A. We use the standard notation ̺l(a) = a[−1] ⊗ a[0] for a ∈ A.

Let A be a left H-module algebra and Bop a left partial H-comodule algebra. We

first define a multiplication on the vector space A⊗Bop by

(a#H
l b)(c#H

l d) = a(b[−1] ⇀ c)#H
l b[0]d

for all a, c ∈ A, b, d ∈ A, which is automatically associative. In order to make a unital

algebra, we project onto

A#H
l Bop = (1A ⊗ 1Bop)(A⊗Bop),

then we can deduce directly the form and the properties of typical elements of this

algebra

a#H
l b = 1[−1] ⇀ a⊗ 1[0]b,
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and finally verify that the product of typical elements satisfies

(2.1) (a#H
l b)(c#H

l d) = a(b[−1] ⇀ c)#H
l b[0]d

for all a, c ∈ A, b, d ∈ Bop.

Proposition 2.2. A#H
l Bop is an associative algebra with the multiplication given

by Equation (2.1) and with the unit 1A#
H
l 1Bop .

P r o o f. It is straightforward to check the associativity of the multiplication.

We only check the unitary properties as follows:

(1A#
H
l 1Bop)(a#H

l b) = (1[−1] ⇀ a)#H
l 1[0]b = a#H

l b,

and

(a#H
l b)(1A#1B) = a(b[−1] ⇀ 1A)#

H
l b[0]1Bop = a#H

l b.

This completes the proof. �

Corollary 2.3. If A = H , then H#H
l Bop is an associative algebra with the unit

1H#H
l 1Bop .

Similarly, L is a Hopf algebra. Suppose that Bop is a right L-module algebra

and A is a right partial L-comodule algebra. We can form a generalized right par-

tial smash product denoted by A#L
r B

op, with the multiplication (a#L
r b)(c#

L
r d) =

ac[0]#
L
l b ↼ c[1]d for all a, c ∈ A, b, d ∈ Bop.

Example 2.4. Let H be a finite dimensional Hopf algebra; the algebra H∗rat is

a right H-module algebra via (f ↼ h)(g) = f(hg), g, h ∈ H , f ∈ H∗rat. Thus if A

is a right partial H-comodule algebra, we may form the right partial smash product

A#H∗rat.

Proposition 2.5. Suppose that A is a leftH-module algebra and Bop is a left par-

tial H-comodule algebra, and furthermore that A is also a right partial L-comodule

algebra and Bop is a right L-module algebra such that for all a ∈ A, b ∈ Bop,

a[0] ⊗ b ↼ a[1] = b[−1] ⇀ a⊗ b[0].

Then there is a natural algebra isomorphism from A#H
l Bop to A#L

r B
op defined by

the mapping a#H
l b to a#L

r b.
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P r o o f. Defining ξ : A#H
l Bop → A#L

r B
op by ϕ(a#H

l b) = a#L
r b for a ∈ A and

b ∈ Bop, we have

ξ((a#H
l b)(c#H

l d)) = ξ(a(b[−1] ⇀ c)#H
l b[0]d) = a(b[−1] ⇀ c)#L

l b[0]d

= ac[0]#
L
l b ↼ c[1]d = (a#L

r b)(c#
L
r d)

= ξ(a#H
l b)ξ(c#H

l d).

�

This example of partial coaction comes from [2]. Let G be a finite group. If

N is a normal group of G with char(k) ∤ |N |, then eN = |N |
−1 ∑

n∈N

n is a central

idempotent in kG. Let B = eNkG be the ideal generated by eN . Consider the partial

kG-coaction induced on A by ∆: kG→ kG⊗ kG, i.e.,

̺(eNg) = ∆(eNg)(1⊗ eN ) = eNg ⊗ eNg =
1

|N |2

∑

m,n∈N

mg ⊗ ng.

Then B is a left partial kG-comodule algebra.

Example 2.6. Suppose that A = eMkG′ is a left kG-module algebra and

B = eNkG is a right kG′-module algebra, where M is a normal group of G′ with

char(k) ∤ |M |. Then em = |M |−1
∑

m∈M

m is a central idempotent in kG′, then

B = eNkG is a left partial kG-comodule algebra and A = eMkG′ is also a right

partial kG′-comodule algebra such that for any g ∈ G, h ∈ G′,

eMh⊗ eNg ↼ eMh = eNg ⇀ eMh⊗ eNg.

Then there is a natural algebra isomorphism from A#kG
l B to A#kG′

r B defined by

the mapping a#kG
l b to a#kG′

r b.

Definition 2.7. We call an algebra A a left (right) L-H-dimodule algebra if A

is a left (right) L-module algebra and a left (right) partial H-comodule algebra such

that the H-comodule structure map is an L-module map, i.e.,

(m ⇀ a)[−1] ⊗ (m ⇀ a)[0] = a[−1] ⊗m ⇀ a[0]

and

((a ↼ m)[0] ⊗ (a ↼ m)[1] = a[0] ↼ m⊗ a[1])

for all m ∈ L, a ∈ A.
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Remark 2.8. Definition 2.7 which involves partial actions of two different groups

is considered as follows. Let e ∈ kG be an idempotent such that e⊗ e = ∆(e)(e⊗ 1)

and ε(e) = 1. Obviously A = k is a left (right) kG′-module algebra, and a left

(right) partial kG-comodule algebra, then the algebra A is called a left (right) kG′-

kG-dimodule algebra.

Lemma 2.9. Let H and L be two Hopf algebras. Then we have the following

statements:

(1) Suppose A is a left H-module algebra and B is a left L-H-dimodule algebra.

Then A#H
l B is a left L-module algebra under the left L-action induced by that

on B, i.e., l ⇀ (a#H
l b) = a#H

l (l ⇀ b) for all l ∈ L.

(2) Suppose A is a left L-H-dimodule algebra and B is a left partial L-comodule

algebra. Then A#L
l B is a left partial H-comodule algebra under the left partial

H-coaction induced by A, i.e., (a#L
l b)[−1] ⊗ (a#L

l b)[0] = a[−1] ⊗ a[0]#
L
l b.

P r o o f. Straightforward. �

Example 2.10. Let G and G′ be two groups. Then we have the following state-

ments:

(1) Suppose A is a left kG-module algebra and B = k is a left kG′-kG-dimodule

algebra. Then A#kG
l B is a left kG′-module algebra under the left kG′-action

induced by that on B, i.e., h ⇀ (a#kG
l b) = a#kG

l b for all h ∈ G′, b ∈ B.

(2) Let e ∈ kG be an idempotent such that e⊗e = ∆(e)(e⊗1) and ε(e) = 1. One can

easily check that A = k is a left kG′-kG-dimodule algebra and B = eMkG′ is a

left partial kG′-comodule algebra. Then A#kG′

l B is a left partial kG-comodule

algebra under the left partial H-coaction induced by A, i.e., (x#kG′

l b)[−1] ⊗

(a#kG′

l b)[0] = e ⊗ x#kG′

l b for any x ∈ A.

Theorem 2.11. Suppose A is a left H-module algebra, B a left L-H-dimodule

algebra, and C a left partial L-comodule algebra. Then the map taking (a#H
l b)#L

l c

to a#H
l (b#L

l c) is a natural isomorphism from (A#H
l B)#L

l C to A#
H
l (B#L

l C) where

the partial smash products (A#H
l B) and (B#L

l C) have the left L-module and left

partial H-comodule structures defined in Lemma 2.9 (1) and (2), respectively.

Example 2.12. Let e ∈ kG be an idempotent such that e⊗ e = ∆(e)(e⊗ 1) and

ε(e) = 1. One can easily check that B = k is a left kG′-kG-dimodule algebra and C =

eMkG′ a left partial kG′-comodule algebra. Suppose A is a left kG-module algebra.

Then the map taking (a#kG
l b)#kG′

l c to a#kG
l (b#kG′

l c) is a natural isomorphism from

(A#kG
l B)#kG′

l C to A#kG
l (B#kG′

l C) where the partial smash products (A#kG
l B)
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and (B#kG′

l C) have the left kG′-module and left partial kG-comodule structures

defined in Example 2.10 (1) and (2), respectively.

Remark 2.13. We can get a right version of Theorem 2.11 for another generalized

right partial smash product. We omit it.

3. Generalized partial twisted smash product

In this section, we introduce the notion of partial coactions of a Hopf algebra

containing partial left and right coaction, and define a partial bicomodule algebra.

On the base of these notions, we introduce a new partial twisted smash product

A ⋆ H∗. Furthermore, we find a necessary condition for A ⋆ H∗ to be a Hopf algebra.

Definition 3.1. Let H be a Hopf algebra with antipode S and A an algebra.

A is called a partial H-bicomodule algebra if A is not only a left partial H-comodule

algebra with the left partial comodule coaction ̺l but also a partial rightH-comodule

algebra with the right partial comodule coaction ̺r, and satisfies the compatibility

condition, i.e., (̺l ⊗ idH)̺r = (idH ⊗ ̺r)̺l.

We denote

a[−1] ⊗ a[0] ⊗ a[1] = a[0][−1] ⊗ a[0][0] ⊗ a[1] = a[−1] ⊗ a[0][0] ⊗ a[0][1].

Let H be a finite dimensional Hopf algebra and A a partial H-bicomodule algebra.

Then A is a partial H∗-bimodule algebra via f ⇀ a =
∑

〈f, a[1]〉a[0] and a ↼ g =

〈g, a[−1]〉a[0] for a ∈ A, f, g ∈ H∗.

We first propose a multiplication on the vector space A⊗H∗,

(a ⋆ f)(b ⋆ g) = ab[0] ⋆ (S(b[−1])→ f ← b[1])g

for all a, c ∈ A, b, d ∈ A, which is automatically associative. In order to make a unital

algebra, we project onto

A ⋆ H∗ = (A⊗H∗)(1A ⊗ 1H∗);

then we can deduce directly the form and the properties of typical elements of this

algebra

a#H
l b = 1[−1] ⇀ a⊗ 1[0]b,

and finally verify that the product typical elements satisfies

(3.1) (a ⋆ f)(b ⋆ g) = ab[0] ⋆ (S(b[−1])→ f ← b[1])g

for all a, b ∈ A, f, g ∈ H∗.

From the above definition and using the compatibility condition, we have
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Proposition 3.2. Let H be a finite dimensional Hopf algebra and A a partial

H-bicomodule algebra. Then the tensor space A ⋆ H∗ is an associative algebra with

the multiplication in (3.1) and the unit 1A ⋆ 1H∗ .

P r o o f. We only prove the unit and omit the associativity.

(a ⋆ f)(1A ⋆ 1H∗) =
∑

a1[0] ⋆ S(1[−1])→ f ← 1[1]

=
∑

a1[0]1̂[0] ⊗ S(1[−1]1̂[−1])→ f ← 1[1]1̂[1]

= a ⋆ f = (1A ⋆ 1H∗)(a ⋆ f).

�

Proposition 3.4. Let a ⋆ 1H∗ , 1A ⋆ f ∈ A ⋆ H∗. Then

(i) (a ⋆ 1H∗)(1A ⋆ f) = a ⋆ f ,

(ii) (1A ⋆ f)(a ⋆ 1H∗) = a[0] ⋆ (S(a[−1])→ f ← a[1]),

(iii) (a ⋆ 1H∗)(b ⋆ 1H∗) = ab ⋆ 1H∗ .

P r o o f. Straightforward. �

Theorem 3.5. Let H be a finite dimensional Hopf algebra with antipode S, let

A be a bialgebra and a partial H-bicomodule algebra.

(1) The partial twisted smash product algebra A ⋆H∗ equipped with the tensor

product coalgebra structure makes A ⋆ H∗ into a bialgebra, if the following

conditions hold:

(a)
∑

εA(f1 ⇀ a ↼ S∗(f2)) = εA(a)εH∗(f),

(b) ∆A

(
∑

f1 ⇀ a ↼ S∗(f2)
)

=
∑

(f1 ⇀ a1 ↼ S∗(f2))⊗ (f3 ⇀ a2 ↼ S∗(f4)),

(c)
∑

(f1 ⇀ a)⊗ f2 =
∑

(f2 ⇀ a)⊗ f1,

(d)
∑

(a ↼ S∗(f1))⊗ f2 =
∑

(a ↼ S∗(f2))⊗ f1.

(2) Furthermore, if A is a Hopf algebra, and we assume that the formula

∑

f1 → 1A ← S∗(f2) = εH∗(f)1A

holds, then A ⋆ H∗ is a Hopf algebra with antipode SA⋆H∗ defined by:

SA⋆H∗(a ⋆ f) = (1 ⋆ S∗(f))(SA(a) ⋆ 1).
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P r o o f. (1) First we verify that ∆A⋆H∗ is an algebra morphism with the multi-

plication on A ⋆ H∗ and the tensor product coalgebra structure on A ⋆ H∗:

∆A⋆H∗((a ⋆ f)(b ⋆ g)) =
∑

∆A⋆H∗(ab[0] ⋆ (S(b[−1])→ f ← b[1])g)

=
∑

∆A⋆H∗(a1(f1 ⇀ b ↼ S∗(f3)) ⋆ f2g)

=
∑

(a1(f1 ⇀ b ↼ S∗(f3)))1 ⋆ (f2g)1 ⊗ (a1(f1 ⇀ b ↼ S∗(f3)))2 ⋆ (f2g)2

=
∑

a1(f1 ⇀ b ↼ S∗(f4))1 ⋆ f2g1 ⊗ a2(f1 ⇀ b ↼ S∗(f4))2 ⋆ f3g2

(d)
=

∑

a1(f1 ⇀ b ↼ S∗(f3))1 ⋆ f2g1 ⊗ a2(f1 ⇀ b ↼ S∗(f3))2 ⋆ f4g2

(d)
=

∑

a1(f1 ⇀ b ↼ S∗(f2))1 ⋆ f3g1 ⊗ a2(f1 ⇀ b ↼ S∗(f2))2 ⋆ f4g2

(b)
=

∑

a1(f1 ⇀ b1 ↼ S∗(f2)) ⋆ f5g1 ⊗ a2(f3 ⇀ b2 ⇀ S∗(f4)) ⋆ f6g2

(d)
=

∑

a1(f1 ⇀ b1 ↼ S∗(f2)) ⋆ f4g1 ⊗ a2(f3 ⇀ b2 ↼ S∗(f5)) ⋆ f6g2

(d)
=

∑

a1(h1 ⇀ b1 ↼ S∗(f2)) ⋆ f4g1 ⊗ a2(f3 ⇀ b2 ↼ S∗(f6)) ⋆ f5g2

(c)
=

∑

a1(f1 ⇀ b1 ↼ S∗(f2)) ⋆ f3g1 ⊗ a2(f4 ⇀ b2 ↼ S∗(f6)) ⋆ f5g2

(d)
=

∑

a1(f1 ⇀ b1 ↼ S∗(f3)) ⋆ f2g1 ⊗ a2(f4 ⇀ b2 ↼ S∗(f6)) ⋆ f5g2

= ∆(a ⋆ f)∆(b ⋆ g).

Next, we verify that εA⋆H∗ is also an algebra morphism. It is easy to verify that

εA⋆H∗(a ⋆ f) = εA(a)εH∗(f).

In fact,

εA⋆H∗(a ⋆ f) =
∑

εA⋆H∗(a(f1 ⇀ 1A ↼ S∗(f3))⊗ f2)

=
∑

εA(a(f1 ⇀ 1A ↼ S∗(f3)))εH∗(f2)

= εA(a)εH∗(f),

εA⋆H∗((a ⋆ f)(b ⋆ g)) =
∑

εA⋆H∗(ab[0] ⋆ (S(b[−1])→ f ← b[1])g)

=
∑

εA⋆H∗(a(f1 ⇀ b ↼ S∗(f3)) ⋆ f2g)

=
∑

εA(a(f1 ⇀ b ↼ S∗(f3)))εH∗(f2g)

(a)
= εA(a)εH∗(f)εA(b)εH∗(g)

= εA⋆H∗(a ⋆ f)εA⋆H∗(b ⋆ g).

Hence, A ⋆H∗ is a bialgebra.
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(2) It is easy to check that (SA⋆H∗ ∗ id)(a ⋆ f) = εA(a)εH∗(f)1A ⋆ 1H∗ = (id ∗

SA⋆H∗)(a ⋆ f).

Therefore, A ⋆ H∗ is a Hopf algebra. �

Remark 3.6. In Theorem 3.5, the conditions (b), (c) and (d) of the item (1) can

be easily verified for the case when H∗ is cocommutative (therefore, H is commuta-

tive). If a Hopf algebra H satisfies these three conditions, then H∗ is not necessarily

cocommutative.

A concrete counterexample is presented as follows.

Recall the definition of H4. As a k-algebra, H4 is generated by two symbols c and

x which satisfy the relations c2 = 1, x2 = 0 and xc+cx = 0. The coalgebra structure

on H4 is determined by

∆(c) = c⊗ c, ∆(x) = x⊗ 1 + c⊗ x, ε(c) = 1, ε(x) = 0.

Consequently, H4 has the basis 1 (identity), c, x, cx. We now consider the dual

H∗

4 of H4. We have H4
∼= H∗

4 (as Hopf algebras) via

1 7→ 1∗ + c∗, c 7→ 1∗ + c∗, x 7→ x∗ + (cx)∗, cx 7→ x∗ − (cx)∗,

where {1∗, c∗, x∗, (cx)∗} denotes the dual basis of {1, c, x, cx}. Then we let T =

1∗ + c∗, P = x∗ + (cx)∗, TP = x∗ − (cx)∗, getting another basis {1, T, P, TP}

of H∗

4 . Recall from [5] that if A is the subalgebra k[x] of H4, then A is a right

partial H4-comodule algebra with the coaction ̺(1) = 1
2 (1 ⊗ 1 + 1 ⊗ c + 1 ⊗ cx),

̺r(x) = 1
2 (x⊗ 1 + x⊗ c+ x⊗ cx). In a similar way we can define A as a left partial

H4-comodule algebra with the coaction ̺(1) = 1
2 (1 ⊗ 1 + c ⊗ 1 + cx ⊗ 1), ̺l(x) =

1
2 (1⊗x+ c⊗x+ cx⊗x). It can be easily checked that A is a partial H4-bicomodule

algebra, hence A is a partial H∗

4 -bimodule algebra via f ⇀ a =
∑

〈f, a[1]〉a[0] and

a ↼ g = 〈g, a[−1]〉a[0], for a ∈ A, f, g ∈ H∗.

We only consider the element P of H∗

4 and check the condition (b) as follows:

∆A

(

∑

P1 ⇀ x ↼ S∗(P2)
)

= ∆A(P ⇀ x ↼ S∗(1) + T ⇀ x ↼ S∗(P ))

= ∆A

(〈

P,
1

2
(1 + c+ cx)

〉

x
〈

1,
1

2
(1 + c+ cx)

〉

+
〈

T,
1

2
(1 + c+ cx)

〉〈

P,
1

2
(1 + c+ cx)

〉

x
)

=
〈

P,
1

2
(1 + c+ cx)

〉

(x ⊗ 1 + 1⊗ x)

+
〈

T,
1

2
(1 + c+ cx)

〉〈

P,
1

2
(1 + c+ cx)

〉

(x⊗ 1 + 1⊗ x)

=
〈

P,
1

2
(1 + c+ cx)

〉

(x ⊗ 1 + 1⊗ x),
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and

∑

(P1 ⇀ x1 ↼ S∗(P2))⊗ (P3 ⇀ x2 ↼ S∗(P4))

=
∑

(P1 ⇀ x ↼ S∗(P2))⊗ (P3 ⇀ 1 ↼ S∗(P4))

+
∑

(P1 ⇀ 1 ↼ S∗(P2))⊗ (P3 ⇀ x ↼ S∗(P4))

=
∑

(P ⇀ x ↼ S∗(1))⊗ (1 ⇀ 1 ↼ S∗(1))

+
∑

(P ⇀ 1 ↼ S∗(1))⊗ (1 ⇀ x ↼ S∗(1))

+
∑

(T ⇀ x ↼ S∗(T ))⊗ (P ⇀ 1 ↼ S∗(1))

+
∑

(T ⇀ 1 ↼ S∗(T ))⊗ (P ⇀ x ↼ S∗(1))

+
∑

(T ⇀ x ↼ S∗(T ))⊗ (T ⇀ 1 ↼ S∗(P ))

+
∑

(T ⇀ 1 ↼ S∗(T ))⊗ (T ⇀ x ↼ S∗(P ))

+
∑

(T ⇀ x ↼ S∗(P ))⊗ (1 ⇀ 1 ↼ S∗(1))

+
∑

(T ⇀ 1 ↼ S∗(P ))⊗ (1 ⇀ x ↼ S∗(1))

=
〈

P,
1

2
(1 + c+ cx)

〉

(x ⊗ 1 + 1⊗ x).

By direct computation we can check that conditions (c) and (d) in Theorem 3.5 hold.

4. Morita context

In this section we construct a Morita context between AbicoH and A ⋆ H∗rat, where

A is a partial bicomodule algebra, generalizing M.Beattie et al.’s work [4].

In what follows, we always assume that 1[0]〈f1, 11〉〈f2, S(1[−1])〉 lies in the center

of A for each f ∈ H∗rat.

Remark 4.1. By virtue of Remark 3.6 that A is a partial H4-bicomodule algebra,

we obtain that

1[0]〈f1, 11〉〈f2, S(1[−1])〉 =
1

2
(1〈f1, 1〉〈f2, S(1)〉+ 1〈f1, c〉〈f2, S(c)〉

+ 1〈f1, cx〉〈f2, S(cx)〉)

=
1

2
(1 + 〈f1, c〉〈f2, c〉+ 1〈f1, cx〉〈f2, cx〉)

=
1

2
(1 + 1) = 1.
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Proposition 4.2. Let H be a co-Frobenius Hopf algebra and A a partial H-

bicomodule algebra, define

AbicoH = {a ∈ A; (̺l ⊗ idH)̺r(a) = 1[−1] ⊗ a1[0] ⊗ 1[1] = 1[−1] ⊗ 1[0]a⊗ 1[1]}.

Then the partial H-bicoinvariants AbicoH is a subalgebra of A.

P r o o f. Straightforward. �

Lemma 4.3. Let A be a partialH-bicomodule algebra. Then A is a left A ⋆ H∗rat-

module and a right A ⋆ H∗rat-module with module structure maps defined as follows:

for all a, b ∈ A, f ∈ H∗rat,

(a ⋆ f) ⊲ b =
∑

a〈f1, b[1]〉, 〈f2, S(b[−1])〉b[0],

and

b ⊳ (a ⋆ f) =
∑

b[0]a[0]〈f1, S
−1(b[1]a[1])〉〈f2, S

2(b[−1]a[−1])〉.

P r o o f. For all a, b, c ∈ A, f, g ∈ H∗rat, it is easy to check that (1A ⋆ 1H∗rat) ⊲

c = c, and we have

((a ⋆ f)(b ⋆ g)) ⊲ c =
∑

(ab[0] ⋆ (S(b[−1])→ f ← b[1])g) ⊲ c

=
∑

ab[0]c[0]〈f4, S(b[−1])〉〈f1, b[1]〉〈f2g1, c[1]〉〈f3g2, S(c[−1])〉

=
∑

ab[0]1[0]c[0]〈f1, b[1]〉〈f2, 1[1]〉〈f3g1, c[1]〉

× 〈f4g2, S(c[−1])〉〈f5, S(1[−1])〉〈f6, S(b[−1])〉

=
∑

ab[0]1[0]c[0]〈f1, b[1]1[1]c[1]1〉〈f2, S(b[−1]1[−1]c[−1]2)〉

× 〈g1, c[1]2〉〈g2, S(c[−1]1)〉

=
∑

ab[0]1[0]c[0]〈f1, b[1]c[1]〉〈f2, S(b[−1]1[−1]c[−1]2)〉

× 〈g1, c[1]〉〈g2, S(c[0][−1]1)〉

=
∑

ab[0]c[0]〈f1, b[1]c[1]〉〈f2, S(b[−1]c[−1])〉

× 〈g1, c[1]〉〈g2, S(c[−1])〉

= (a ⋆ f) ⊲ ((b ⋆ g) ⊲ c).

Hence, A is a left A ⋆ H∗rat-module.
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Now, we show A is a right A ⋆ H∗rat-module. It is not hard to prove that b ⊳

(1A ⋆ 1H∗rat) = b, and we have

b ⊳ ((a ⋆ f)(c ⋆ g)) =
∑

b ⊲ ac[0] ⋆ ((S(c[−1])→ f ← c[1])g)

=
∑

b[0]a[0]c[0]〈f4, S(c[−1])〉〈f1, c[1]〉〈f2g1, S
−1(b[1]a[1]c[1])〉

× 〈f3g2, S
2(b[−1]a[−1]c[−1])〉

=
∑

b[0]a[0]1[0]c[0]〈f4, S(c[−1]1)〉〈f1, c[1]2〉〈f2g1, S
−1(b[1]a[1]1[1]c[1]1)〉

× 〈f3g2, S
2(b[−1]a[−1]1[−1]c[−1]2)〉

=
∑

b[0]a[0]c[0]〈f4, S(c[0][−1]1)〉〈f1, c[1]3〉〈f2, S
−1(b[1]2a[1]2c[1]2)〉

× 〈g1, S
−1(b[1]1a[1]1c[1]1)〉〈f3, S

2(b[−1]2a[−1]2c[−1]2)〉

× 〈g2, S
2(b[−1]1a[0][−1]1c[0][−1]3)〉

=
∑

b[0]a[0]c[0]〈f1, S
−1(b[1]2a[1]2)〉〈g1, S

−1(b[1]1a[1]1c[1])〉

× 〈f2, S
2(b[−1]2a[−1]2)〉〈g2, S

2(b[−1]1a[−1]1c[−1])〉

=
∑

1[0]b[0]a[0]c[0]〈f1, S
−1(b[1]2a[1]2)〉〈g1, S

−1(1[1]b[1]1a[1]1c[1])〉

× 〈f2, S
2(1[−1]b[−1]2a[−1]2)〉〈g2, S

2(b[−1]1a[−1]1c[−1])〉

=
∑

b[0]a[0]c[0]〈f1, S
−1(b[1]a[1])〉〈g1, S

−1(b[1]a[1]c[1])〉

× 〈f2, S
2(b[−1]a[−1])〉〈g2, S

2(b[−1]a[−1]c[−1])〉

= (b ⊳ (a ⋆ f)) ⊳ (c ⋆ g).

�

Theorem 4.4. With the notation as above, and a nonzero left integral t, we have

a Morita context (AbicoH , A ⋆ H∗rat, [, ], (, )) where the connecting maps are given by

[, ] : A⊗AbicoH A→ A ⋆ H∗rat, [a, b] =
∑

ab[0] ⋆ S(b[−1])→ t← b[1],

(, ) : A⊗A⋆H∗rat A→ AbicoH , (a, b) =
∑

a[0]b[0]〈t1, a[1]b[1]〉〈t2, S(a[−1]b[−1])〉.

P r o o f. (1) We will check that [, ], (, ) are well defined, i.e., [, ] is AbicoH -balanced

and (, ) is A ⋆ H∗rat-balanced.

First, for the map [, ], if a, b ∈ A and c ∈ AbicoH , then we have:

[ac, b] =
∑

acb[0] ⋆ S(b[−1])→ t← b[1]

=
∑

ac1[0]b[0] ⋆ S(1[−1]b[−1])→ t← 1[1]b[1]

=
∑

a(cb)[0] ⋆ S((cb)[−1])→ t← (cb)[1] = [a, cb].
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Hence, [, ] is AbicoH -balanced.

Now, for the second map (, ), if a, b, c ∈ A and f ∈ H∗rat, then we have:

(a ⊳ (c ⋆ f), b) =
∑

(a[0]c[0]〈(S
∗)−1(f1), (a[1]c[1])〉〈(S

∗)2(f2), a[−1]c[−1]〉, b)

=
∑

〈(S∗)−1(f1), (a[1]c[1])〉〈(S
∗)2(f2), a[−1]c[−1]〉a[0]c[0]b[0]

× 〈t1, a[1]c[1]b[1]〉〈S
∗(t2), a[−1]c[−1]b[−1]〉

=
∑

〈(S∗)−1(f1), (a[1]2c[1]2)〉〈(S
∗)2(f2), a[−1]1c[−1]1〉1[0]a[0]c[0]b[0]

× 〈t1, 1[1]a[1]1c[1]1b[1]〉〈S
∗(t2), 1[−1]a[−1]2c[−1]2b[−1]〉

=
∑

〈(S∗)−1(f1), (a[1]2c[1]2)〉〈(S
∗)2(f2), a[−1]1c[−1]1〉a[0]c[0]b[0]

× 〈t1, a[1]1c[1]1b[1]〉〈S
∗(t2), a[−1]2c[−1]2b[−1]〉

=
∑

〈(S∗)−1(f1), (a[1]2c[1]2)〉〈(S
∗)2(f2), a[−1]1c[−1]1〉a[0]c[0]b[0]

× 〈t1, a[1]1c[1]1〉〈t2, b[1]〉〈S
∗(t4), a[−1]2c[−1]2〉〈S

∗(t3), b[−1]〉

=
∑

〈t1(S
∗)−1(f1), (a[1]c[1])〉〈(S

∗)2(f2)S
∗(t4), a[−1]c[−1]〉a[0]c[0]b[0]

× 〈t2, b[1]〉〈S
∗(t3), b[0][−1]〉

=
∑

〈t1f2(S
∗)−1(f1), (a[1]c[1])〉〈(S

∗)2(f2)S
∗(t4f5), a[−1]c[−1]〉a[0]c[0]b[0]

× 〈t2f3, b[1]〉〈S
∗(t3f4), b[−1]〉

=
∑

〈t1, (a[1]c[1])〉〈S
∗(t4), a[−1]c[−1]〉a[0]c[0]b[0]

× 〈t2f1, b[1]〉〈S
∗(t3f2), b[−1]〉

=
∑

〈t1, (a[1]c[1])〉〈S
∗(t4), a[−1]c[−1]〉a[0]c[0]1[0]b[0]

× 〈t2, 1[1]b[1]1〉〈f1, b[1]2〉〈S
∗(f2), b[−1]1〉〈S

∗(t3), 1[−1]b[−1]2〉

=
∑

〈t1, (a[1]c[1])〉〈S
∗(t4), a[−1]c[−1]〉a[0]c[0]b[0]

× 〈t2, b[1]〉〈f1, b[1]〉〈S
∗(f2), b[−1]〉〈S

∗(t3), b[−1]〉

= (a, (c ⋆ f) ⊲ b).

Hence (, ) is well defined.

(2) A is an A ⋆ H∗rat-AbicoH -bimodule.

Since A has a canonical AbicoH -bimodule structures on A, we only need to check

the compatibility condition as follows.

For all a ∈ A, b ∈ AbicoH , and c ⋆ f ∈ A ⋆ H∗rat, we have

(c ⋆ f) ⊲ (ab) =
∑

ca[0]b[0]〈f1, a[1]b[1]〉〈f2, a[−1]b[−1]〉

=
∑

ca[0]〈f1, a[1]〉〈f2, a[−1]〉b

= ((c ⋆ f) ⊲ a)b.
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(3) A is an AbicoH -A ⋆ H∗rat-bimodule.

For all a ∈ A, b ∈ AbicoH and c ⋆ f ∈ A ⋆ H∗rat, we have

(ba) ⊳ (c ⋆ f) =
∑

b[0]a[0]c[0]〈f1, S
−1(b[1]a[1]c[1])〉〈f2, S

2(b[−1]a[−1]c[−1])〉

=
∑

b[0]a[0]c[0]〈f1, S
−1(a[1]c[1])〉〈f2, S

−1(b[1])〉

× 〈f3, S
2(b[−1])〉〈f4, S

2(a[−1]c[−1])〉

=
∑

ba[0]c[0]〈f1, S
−1(a[1]c[1])〉〈f2, S

2(a[−1]c[−1])〉

= b(a ⊳ (c ⋆ f)).

(4) [, ] is an A ⋆ H∗rat-bimodule map, so we only check [, ] is a left A ⋆ H∗rat-module

map.

For all a ∈ A, b ∈ AbicoH , c ⋆ h ∈ A ⋆ H∗rat, we have

(c ⋆ f) · [a, b] =
∑

(c ⋆ f)(ab[0] ⋆ (S(b[−1])→ t← b[1]))

=
∑

ca[0]b[0]〈f1, a[1]b[1]〉〈f3, S(a[−1]b[−1])〉

× 〈t1, b[1]〉〈t3, S(b[0][−1])〉f2t2

=
∑

ca[0]1[0]b[0]〈f1, a[1]1[1]b[1]〉〈f3, S(a[−1]1[−1]b[−1])〉

× 〈t1, b[1]〉〈t3, S(b[−1])〉f2t2

=
∑

ca[0]b[0]〈f1, a[1]b[1]1〉〈f3, S(a[−1]b[−1]2)〉

× 〈t1, b[1]2〉〈t3, S(b[−1]1)〉f2t2

=
∑

ca[0]b[0]〈f1, a[1]〉〈f2, b[1]1〉〈f4, S(b[−1]2)〉〈f5, S(a[−1])〉

× 〈t1, b[1]2〉〈t3, S(b[−1]1)〉f3t2

=
∑

ca[0]b[0]〈f1, a[1]〉〈f2t1, b[1]〉〈f4t3, S(b[−1])〉〈f5, S(a[−1])〉f3t2

=
∑

ca[0]b[0]〈f1, a[1]〉〈t1, b[1]〉〈t3, S(b[−1])〉〈f2, S(a[−1])〉t2

= ((c ⋆ h) ⊲ a)b[0] ⋆ (S(b[−1])→ t← b[1])

= [(c ⋆ h) ⊲ a, b].

(5) (, ) is an AbicoH -bimodule map, so for all a, b ∈ A, c ∈ AbicoH we have

(ca, b) =
∑

c[0]a[0]b[0]〈t1, c[1]a[1]b[1]〉〈t2, S(c[−1]a[−1]b[−1])〉

=
∑

c[0]a[0]b[0]〈t1, c[1]〉〈t2, a[1]b[1]〉〈t3, S(a[−1]b[−1])〉〈t4, S(c[−1])〉

=
∑

ca[0]b[0]〈t1, a[1]b[1]〉〈t2, S(a[−1]b[−1])〉 = c(a, b),

(a, bc) =
∑

a[0]b[0]c[0]〈t1, a[1]b[1]c[1]〉〈t2, S(a[−1]b[−1]c[−1])〉

=
∑

a[0]b[0]〈t1, a[1]b[1]〉〈t2, S(a[−1]b[−1])〉c = (a, b)c.
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(6) Finally, it is easy to verify that [, ] and (, ) satisfy associativity, so we omit the

proof. �
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