[3] Branson, T.:
Conformal structure and spin geometry. Dirac Operators: Yesterday and Today, International Press, 2005.
MR 2205362 |
Zbl 1109.53051
[4] Čap, A., Slovák, J.:
Parabolic Geometries: Background and General Theory. vol. 1, American Mathematical Society, 2009.
MR 2532439
[5] Eastwood, M.G., Rice, J.W.:
Conformally invariant differential operators on Minkowski space and their curved analogues. Comm. Math. Phys. 109 (2) (1987), 207–228.
MR 0880414 |
Zbl 0659.53047
[6] Eelbode, D., Souček, V.:
Conformally invariant powers of the Dirac operator in Clifford analysis. Math. Methods Appl. Sci. 33 (13) (2010), 1558–1570.
MR 2680665 |
Zbl 1201.30065
[7] Fefferman, C., Graham, C.R.:
Conformal invariants. The mathematical heritage of Élie Cartan (Lyon, 1984). yon, 1984), Astérisque, Numéro Hors Série (1985), 95–116.
MR 0837196
[8] Fefferman, C., Graham, C.R.:
The ambient metric. Annals of Mathematics Studies, vol. 178, Princeton University Press, Princeton, NJ, 2012.
MR 2858236 |
Zbl 1243.53004
[15] Graham, C.R., Jenne, R.W., Mason, L., Sparling, G.:
Conformally invariant powers of the Laplacian, I: Existence. J. London Math. Soc. (2) 2 (3) (1992), 557–565.
MR 1190438 |
Zbl 0726.53010
[22] Kosmann, Y.:
Propriétés des dérivations de l’algèbre des tenseurs-spineurs. C. R. Acad. Sci. Paris Sér. A 264 (1967), 355–358.
MR 0212712
[24] Šilhan, J.: Invariant differential operators in conformal geometry. Ph.D. thesis, University of Auckland, 2006.
[25] Slovák, J.:
Natural operators on conformal manifolds. Ph.D. thesis, Masaryk University Brno, 1993.
MR 1255551 |
Zbl 0805.53011
[27] Yamabe, H.:
On a deformation of Riemannian structures on compact manifolds. Osaka J. Math. 12 (1) (1960), 21–37.
MR 0125546 |
Zbl 0096.37201