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ON CONFORMAL POWERS OF THE DIRAC OPERATOR

ON SPIN MANIFOLDS

Matthias Fischmann

Abstract. The well known conformal covariance of the Dirac operator acting
on spinor fields does not extend to its powers in general. For odd powers of the
Dirac operator we derive an algorithmic construction in terms of associated
tractor bundles computing correction terms in order to achieve conformal co-
variance. These operators turn out to be formally (anti-) self-adjoint. Working
out this algorithm we recover explicit formula for the conformal third and
present a conformal fifth power of the Dirac operator. Finally, we will present
polynomial structures for the first examples of conformal powers in terms of
first order differential operators acting on the spinor bundle.

1. Introduction

In mathematics and physics differential operators are of central interest and a
specific class is given by conformally covariant operators, i.e., they only depend on a
given conformal class of metrics [g] on a n-dimensional manifold. The most studied
examples are the Dirac operator [22, 18, 9] and the Yamabe operator [27, 23, 2]. With
the appearance of the ambient metric construction or equivalently Poincaré-Einstein
metric, cf. [7, 8], a powerful tool emerged to deal with conformal structures. Using
the ambient metric a sequence of conformally covariant differential operators P2N (g)
acting on functions with leading part an N -th power of the Laplacian, for N ∈ N
(N ≤ n

2 for even n), was constructed in [15]. In even dimensions it was shown in
[13] that in general no conformal N -th power of the Laplacian for N > n

2 does
exist. These so-called GJMS operators are also linked with scattering matrices
associated to Poincaré-Einstein metrics [16]. Another tool to deal with conformal
structures are associated tractor bundles [26, 1]. Based on tractor bundles the
GJMS operators were recovered by translation of the strongly invariant Yamabe
operator by tractor D-operators in [14]. This technique is referred to as curved
translation principle, cf. [5]. In case of even dimensions n their construction failed
to produce the critical GJMS operator Pn(g). Explicit formulas have rarely been
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produced, due to the complexity of the underlying algorithms. However, GJMS
operators are in the case of flat manifolds just powers of the Laplacian, whereas in
case of Einstein manifolds they are given by a product of shifted Laplacians [12].
Recent results [20, 21] describe the GJMS operators as polynomials in second order
non-conformally covariant differential operators, which are of independent interest.

Concerning the spinor case not so much is known about conformal powers of
the Dirac operator. It follows from [25] that no conformal even powers of the
Dirac operator do exist. The existence of conformal odd powers was proven in [19]
using the ambient metric. Again, in the even dimensional case their construction
failed to give conformal powers when the order exceed the dimension. The first
explicit formula for a conformal third power is due to Branson [3] using tractor
techniques. Like in the scalar case, conformal powers are linked to scattering
operators associated to Poincaré-Einstein metrics [17]. They also gave an explicit
formula for the conformal third power, in agreement with the result of Branson.
Explicit formulas for all orders are available for flat structures, for the standard
round sphere [6] and for Einstein manifolds [11]. But in general, further examples
were not known in the literature.

The main results of the article are the following: We construct conformal powers
of the Dirac operator using associated tractor bundles, cf. Definition (4.1). Based
on that we present for n 6= 4 an explicit formula for a conformal fifth power, cf.
Theorem 4.3. Furthermore, we prove that the obtained operators are formally
(anti-) self-adjoint, cf. Theorem 4.9. Finally, we identify conformal powers of the
Dirac operator up to order five as polynomials in first order operators, cf. Theorem
4.10.

2. Preliminaries

This section fixes notations and conventions used throughout the article. As for
literature we refer to standard books.

Riemannian geometry: Let (M, g) be a n-dimensional oriented semi-Riemannian
manifold of signature (p, q). Such a structure is equivalent to a SO(p, q) ⊂
Gl(n,R)-reduction

(
Pg, π,M, SO(p, q)

)
of the frame bundle to the special ortho-

gonal group. The associated Levi-Civita connection is denoted by ∇g. The metric
induces a point-wise isomorphism ·\ : T ∗M → TM . For vector fields X, Y , Z,
W ∈ Γ(TM) the curvature tensor is given by R(X,Y )Z = ∇gX∇

g
Y Z −∇

g
Y∇

g
XZ −

∇g[X,Y ]Z, whereas the Riemannian curvature tensor is given by R(X,Y, Z,W ) =
g(R(X,Y )Z,W ). Furthermore, let us denote by Ric, τ and 2(n − 1)J = τ the
Ricci-, scalar- and normalized scalar curvatures, respectively. The trace-adjusted
Ricci- (Schouten tensor), Cotton-, Weyl- and Bach tensor are denoted by P =
(n − 2)−1(Ric−Jg), C(X,Y, Z) = (∇gXP )(Y,Z) − (∇gY P )(X,Z), W = R + P ?
g, and B(X,Y ) = trg

(
(∇g· C)(·, X, Y )

)
+ g(W (·, X, Y, ·), P ), respectively. The

Kulkarni-Nomizu product ? has the sign convention P ? g(X,Y, Z, U) =
P (X,Z)g(Y,U) + P (Y,U)g(X,Z)− P (X,U)g(Y,Z)− P (Y,Z)g(X,U).
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Clifford algebra: Consider the vector space (Rn, 〈·, ·〉p,q) equipped with scalar
product of signature (p, q), i.e., 〈ei, ej〉p,q = εiδij , where {ei} is the standard
basis, εi = −1 for 1 ≤ i ≤ p; εi = 1, for p + 1 ≤ i ≤ n. The Clifford algebra
associated to (Rn, 〈·, ·〉p,q) and denoted by Cp,q is Z2-graded, given by even and odd
elements, i.e., Cp,q = C0

p,q ⊕ C1
p,q. The group of units of Cp,q contains two important

subgroups, the Pin-group Pin(p, q), given by products of elements x ∈ Rn of
length ±1, and the Spin-group Spin(p, q) := Pin(p, q) ∩ C0

p,q. Let us denote by
λ : Spin(p, q) → SO(p, q) the double covering map, λ(g)y := gyg−1 ∈ Rn for
g ∈ Spin(p, q), y ∈ Rn. We denote by κn the restriction to the Spin-group of the
unique irreducible representation (for odd n one of the two unique irreducible
representations) of the Clifford algebra on ∆n := C2m , for n = 2m or n = 2m+ 1.
It is irreducible for odd n or decomposes into two non-equivalent irreducible
representations on ∆n−1 for even n. A modification of the hermitian scalar product
on ∆n leads to a Spin0(p, q)-invariant scalar product (·, ·)∆, where ·0 denotes the
connected component containing the identity.

Spin geometry: Let (M, g) be a Spin-manifold (n-dimensional oriented semi-Rie-
mannian Spin-manifold of signature (p, q)) and choose a spin structure (Qg, fg). The
spinor bundle of (M, g) is the associated vector bundle S(M, g) := Qg×(Spin0(p,q),κn)
∆n. Due to the isomorphism TM ' Qg×(Spin0(p,q),ρ◦λ) Rn, where ρ is the standard
representation of SO(p, q), we denote by X ·ψ = [q, x ·v] the Clifford multiplication
between X = [q, x] ∈ Γ(TM) and ψ = [q, v] ∈ Γ

(
S(M, g)

)
. It extends to w ∈ ΛkM

by

w · ψ =
∑

1≤i1<...<ik≤n
εi1 · · · εikw(si1 , . . . , sik)si1 · . . . · sik · ψ ,

which is independent of the chosen g-orthonormal frame s = (s1, . . . , sn). The scalar
product (·, ·)∆ induces a metric structure on spinor bundle by 〈ψ, φ〉 := (u, v)∆, for
ψ = [q, u], φ = [q, v] ∈ S(M, g), which satisfies 〈X ·ψ, φ〉+ (−1)p〈ψ,X ·φ〉 = 0. The
Levi-Civita connection lifts to a covariant derivative ∇g,S on the spinor bundle,
which satisfies the Leibniz rule with respect to Clifford multiplication and the
〈·, ·〉-metricity. The Dirac operator on S(M, g) is denoted by /D

loc.=
∑
i εisi · ∇g,Ssi .

It follows from Weitzenböck formula that /D
2
ψ = −∆S(M,g)

g ψ + τ
4ψ, where ∆E

g :=
trg(∇T

∗M⊗E ◦∇) is the Bochner Laplacian associated to a vector bundle with cova-
riant derivative (E,∇) over (M, g). Concerning questions of (anti-) self-adjointness
of certain operators on spinor fields we introduce a bracket notation. Let T be a
symmetric (0, 2)-tensor and ψ a spinor field. We define first a 1-form T · ψ with
values in the spinor bundle by T · ψ(X) := T (X)\ · ψ. The following brackets are
defined then:

(T, η) :loc.=
∑
i

εiT (si)\ · η(si) ,(2.1)

(∇g,S , T · ψ) :loc.=
∑
i

εi(∇g,Ssi T · ψ)(si) ,(2.2)
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for η ∈ Ω1(M,S(M, g)
)
. Next, we define a symmetric (0, 2)-tensor T 2 := T

(
T (·), ·

)
,

and introduce the notation

(2.3) (C,P · ψ) :loc.=
∑
i

εiC(si) · P (si) · ψ ,

where the Cotton tensor is considered as C(X) := C(·, ·, X) ∈ Ω2(M). Analogously
one defines (P,C · ψ). Two more product types, needed later on, are

W ·W · ψ :loc.=
∑
i,j

εiεjW (si, sj) ·W (si, sj) · ψ ,(2.4)

C ·W · ψ :loc.=
∑
i,j

εiεjC(si, sj , ·) ·W (si, sj) · ψ ,(2.5)

where Clifford multiplication of the 2-form W (X,Y ) := W (X,Y, ·, ·) ∈ Ω2(M)
appears. Similary we define W · C · ψ.

Conformal geometry: Let (M, [g]) be a conformal manifold (n-dimensional
oriented conformal manifold of signature (p, q)). This is equivalent to a CO(p, q) ⊂
Gl(n,R)-reduction

(
P0, π,M,CO(p, q)

)
of the frame bundle to the conformal group

CO(p, q) = R+ × SO(p, q). Levi-Civita connections corresponding to g, ĝ = e2σg ∈
[g] are related by ∇ĝXY = ∇gXY +X(σ)Y + Y (σ)X − g(X,Y )gradg(σ), hence in
general they are not invariant under conformal change of metrics. In contrast, the
Weyl tensor is conformally invariant of weight 2, i.e., W (ĝ) = e2σW (g).

For metrics g, ĝ ∈ [g] there exists a vector bundle isomorphism Fσ = ·̂ : S(M, g)→
S(M, ĝ) induce by the isomorphism Lσ : TM → TM , Lσ(X) := e−σX, which pulls
back ĝ to g. Clifford multiplications for g and ĝ are related by Fσ(X · ψ) =
Lσ(X) ·Fσ(ψ), for X ∈ Γ(TM) and ψ ∈ Γ

(
S(M, g)

)
. Corresponding covariant deri-

vatives ∇g,S and ∇ĝ,S are related by ∇ĝ,SX ψ̂ = ∇̂g,SX ψ− 1
2 ( ̂X · grad(σ) · ψ+X(σ)ψ̂),

hence not conformally invariant in general. However, for corresponding Dirac ope-
rators we have /̂D(e 1−n

2 σψ̂) = e−
n+1

2 σ /̂Dψ, where /̂D denotes the Dirac operator on
S(M, ĝ).

Let (M, [g]) be a conformal Spin-manifold. A conformal spin structure (Q0, f0) is
by definition a λc-reduction of the conformal frame bundle, where λc : C Spin(p, q)→
CO(p, q) is given λc(a, g) := aλ(g) and C Spin(p, q) := R+×Spin(p, q) is the confor-
mal Spin-group.

Let E → M and F → M be vector bundles over (M, g). We say that a linear
differential operator D(g) : Γ(E)→ Γ(F ) is g-geometrical if it is locally a polynomial
in g, g−1, ∇g and R. A g-geometrical operator D(g) is said to be conformally
covariant of bi-degree (a, b) if there exists a, b ∈ R such that

D(e2σg)(eaσψ) = ebσD(g)ψ ,

for any metric e2σg, and ψ ∈ Γ(E). Examples of conformally covariant operators
are the GJMS operator P2N (g) with conformal bi-degree ( 2N−n

2 ,− 2N+n
2 ) and the

Dirac operator with bi-degree ( 1−n
2 ,− 1+n

2 ).
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Parabolic geometry for conformal spin structures: Let M be a manifold,
G a Lie group and H ⊂ G a closed subgroup. A Cartan geometry (G, π,M,H;w)
of type (G,H) over M , consists of an H-principal bundle G over M with a Cartan
connection w ∈ Ω1(G, g), i.e., (1) w(X̃) = X for every X ∈ h (where X̃ denotes
the fundamental vector field of X), (2) w : TuG → g is an isomorphism, for every
u ∈ G, and (3) (Rh)∗w = Ad(h−1) ◦ w, for every h ∈ H.

A Cartan geometry (G, w) of type (G,H), for which H is a parabolic subgroup
inside a semisimple Lie group G, is referred to as a parabolic geometry.

An conformal manifold (M, [g]) can be described as a parabolic geometry as
follows: Consider the special orthogonal group G := SO(p+1, q+1). In terms of the
standard orthonormal basis {eα}n+1

α=0 with respect to the standard semi-Riemannian
metric 〈·, ·〉p+1,q+1 on Rn+2, we consider the following basis f0 := 1√

2 (en+1 −
e0), e1, . . . , en, fn+1 := 1√

2 (en+1 + e0) on Rn+2. The stabilizer B := stabRf0(G)
of the isotropic line Rf0 defines a parabolic subgroup of G. Note that the Lie
algebra g of G is |1|-graded. In this setting it is shown in [4, Section 1.6] that there
exists a parabolic geometry (P1, wnc) of type (G,B) uniquely associated to the
conformal structure. Geometrically speaking, the B-principal bundle P1, called
first prolongation of the conformal frame bundle, is the collection of horizontal and
torsion-free subspaces in TP0, and the normal conformal Cartan connection wnc is
a well-chosen extension of the soldering form of P1. Hence, to (M, [g]) is associated
a distinguished Cartan geometry of type (G,B).

Let (M, [g]) be an conformal Spin-manifold. Denote by ·̃ the pullback of the
groups G,B by the covering map λ : Spin(p + 1, q + 1) → SO(p + 1, q + 1). By
fixing a conformal spin structure (Q0, f0) on (M, [g]), we obtain a first prolongation
(Q1, f1) of the conformal spin structure as lift of the first prolongation P1 of the
conformal structure. Furthermore, the normal conformal Cartan connection wnc

induces a Cartan connection w̃nc := λ∗ ◦ wnc ◦ df1 ∈ Ω1(Q1, spin(p + 1, q + 1)
)

on Q1. Hence, to a conformal Spin-manifold (M, [g]) is associated a distinguished
Cartan geometry of type (G̃, B̃).

Tractor bundles: Consider the standard representation ρ : G → Gl(Rn+2) and
spin representation ρ̃ := κn+2 : G̃→ Gl(∆n+2). We may define the standard and
spin tractor bundles by

T (M) := P1 ×(B,ρ) Rn+2,

S(M) := Q1 ×(B̃0,ρ̃)
∆n+2.

Both bundles can be equipped with a bundle metric: gT (t1, t2) := 〈y1, y2〉p+1,q+1, for
ti = [H, yi] ∈ T (M), i = 1, 2; and gS(s1, s2) := (v1, v2)∆, for si = [H̃, vi] ∈ S(M),
i = 1, 2. They are well defined since 〈·, ·〉p+1,q+1 and (·, ·)∆ are invariant under
B and B̃0, respectively. The Cartan connections wnc and w̃nc induce covariant
derivatives ∇T and ∇S , which are metric with respect to gT and gS , respectively.

A metric g from the conformal class leads to the following isomorphisms:
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T (M) ' Pg ×(SO(p+1,q+1),ρ) Rn+2 ,

S(M) ' Qg ×(Spin0(p+1,q+1),ρ̃) ∆n+2 ,

TM ' Pg ×(SO(p,q),Ad) b−1 ' Qg ×(Spin0(p,q),Ad ◦λ) b−1 ,

T ∗M ' Pg ×(SO(p,q),Ad) b1 ' Qg ×(Spin0(p,q),Ad ◦λ) b1 ,

so(TM, g) ' Pg ×(SO(p,q),Ad) so(p, q) ' Qg ×(Spin0(p,q),Ad ◦λ) so(p, q) .

Hence we obtain a vector bundle isomorphisms

Φg : T (M)→M ⊕ TM ⊕M =: T (M)g ,
t = [e, y] 7→ (α,X, β) =: tg ,(2.6)

where M := M × R is the trivial bundle, y ∈ Rn+2 has coordinates (α, x =
(x1, . . . , xn), β) with respect to the basis {f0, ei, fn+1} of Rn+2, and X ∈ TM is
the vector with coordinates x = (x1, . . . , xn) with respect to e ∈ Pg. Furthermore,
we have the bundle isomorphism

Ψg : S(M)→ S(M, g)⊕ S(M, g) =: S(M)g
s = [q, v] 7→ (ψ, φ) =: sg,(2.7)

where ψ = [q, w1] and φ = [q, w2], with w1, w2 ∈ ∆n being determined as follows:
Consider the two Spin(p, q)-invariant subspaces W+ := {v ∈ ∆n+2 | fn+1 · v = 0}
and W− := {v ∈ ∆n+2 | f0 · v = 0} of ∆n+2. Note that we naturally identify
W+ and ∆n. Hence, ρ̃ restricted to Spin(p, q) decomposes into two representations
ρ̃± : Spin(p, q) → Gl(W±), such that ρ̃|Spin(p,q) = ρ̃+ ⊕ ρ̃−. From the definition
of W± it follows that ρ̃± are equivalent with respect to the isomorphism W+ 3
w 7→ f0 · w ∈ W−. Therefore, our element in question v ∈ ∆n+2 can be uniquely
decomposed as v = w1 + f0 · w2 with w1, w2 ∈ W+ due to the isomorphism
W+ ×W+ 3 (w1, w2) 7→ w1 + f0 · w2 ∈ ∆n+2.

The maps Φg and Ψg allow an interpretation of tractor objects in terms of
g-geometrical data. For example, we have that

Φg ◦ ∇TX ◦ (Φg)−1 =

∇gX −P (X, ·) 0
X· ∇gX P (X)\·
0 −g(X, ·) ∇gX


and

Ψg ◦ ∇SX ◦ (Ψg)−1 =
(
∇g,SX X·

1
2P (X)\· ∇g,SX

)
.

A further example is given by the bundle metrics, here we have that

(2.8) gT (t1, t2) = α1β2 + g(X1, X2) + α1β2,

for ti = [e, yi], i = 1, 2. Moreover, for si = [q, vi] ∈ S(M), i = 1, 2, we have that

gS(s1, s2) = −2
√

2ip (〈ψ2, φ1〉+ (−1)p〈ψ1, φ2〉) .(2.9)



ON CONFORMAL POWERS OF THE DIRAC OPERATOR ON SPIN MANIFOLDS 243

Note that these relations are based on the isomorphisms (2.6) and (2.7). Further-
more, the relation among T (M)g and S(M)g for different representatives g, ĝ ∈ [g]
are given by

T (g, σ) := Φĝ ◦ (Φg)−1 =

e−σ −e−σdσ − 1
2e
−σ|gradg(σ)|2g

0 e−σ e−σgradg(σ)
0 0 eσ

 ,

and

TS(M)(g, σ) := Ψĝ ◦ (Ψg)−1 =
(
Fσ 0
0 Fσ

)
◦
(

e
1
2σ 0

1
2e
− 1

2σgradg(σ)· e−
1
2σ

)
,

where Fσ : S(M, g)→ S(M, ĝ) is the bundle isomorphism relating spinor bundles
for two conformally related metrics g and ĝ = e2σg.

3. Relevant differential operators

In this section we present some operators necessarily for the construction of
conformal powers of the Dirac operator. Firstly we recall the tractor D-operator
for functions and spinors, where the former extends to Sk(M) := ⊗kT (M)⊗S(M)
for k ∈ N0 due to its strong invariance, cf. [1, 24]. Secondly we follow the curved
translation principle to construct higher order conformally covariant differential
operators acting on the spin tractor bundle.

The tractor D-operator D(g, w) : C∞(M)→ Γ(T (M)g), w ∈ R, for functions is
given by

D(g, w)β :=

 −∆gβ − wJβ
(n+ 2w − 2)(∇gβ)\
w(n+ 2w − 2)β

 ,(3.1)

where ∆g := trg(∇T
∗M⊗TM ◦∇g). For w ∈ R, the tractor D-operator Dspin(g, w) :

Γ
(
S(M, g)

)
→ Γ(S(M)g) for spinors is given by

(3.2) Dspin(g, w)ψ :=
(

(w + n−1
2 )ψ

1
2 /Dψ

)
.

They satisfy the following conformal transformation laws:

Proposition 3.1. Let ĝ = e2σg, β ∈ C∞(M) and ψ ∈ Γ
(
S(M, g)

)
. Then one has

D(ĝ, w)(ewσβ) = e(w−1)σT (g, σ)D(g, w)β ,

Dspin(ĝ, w)(ewσψ̂) = e(w− 1
2 )σTS(M)(g, σ)Dspin(g, w)ψ ,

for all w ∈ R.

Proof. The proof is straightforward and based on equations (3.1), (3.2), formulas
∆
ĝ
β = e−2σ[∆gβ + (n− 2)∇ggrad(σ)β

]
,

∆g(ewσβ) = ewσ
[
∆gβ + 2w∇ggrad(σ)β + w2|grad(σ)|2gβ + ∆gσβ

]
,

Ĵ = e−2σ[J −∆gσ − n−2
2 |grad(σ)|2g

]
,
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as well as on /D(β · ψ) = grad(β) · ψ + β /Dψ and the conformal covariance of the
Dirac operator. �

Twisting the Levi-Civita connection with the covariant derivative ∇Sk on Sk(M),
for k ∈ N0, yields an extension of the tractor D-operator for functions: DSk(g, w) :
Γ
(
Sk(M)

)
→ Γ

(
Sk+1(M)

)
, given by

DS
k

(g, w)s =

 −�k
ws

(n+ 2w − 2)(∇Sks)\
w(n+ 2w − 2)s

(3.3)

for s ∈ Γ
(
Sk(M)

)
and �k

ws := ∆S
k(M)

g s + wJs. It satisfies the same conformal
transformation law as the tractor D-operatorD(g, w). The conformal transformation
laws for DSk(g, w) and Dspin(g, w) for w = n−2

2 and w = n−1
2 , respectively, gives

the following:

Corollary 3.2. The operator �k
2−n

2
on Γ

(
Sk(M)

)
is conformally covariant of

bi-degree ( 2−n
2 ,− 2+n

2 ).
The Dirac operator /D on Γ

(
S(M, g)

)
is conformally covariant of bi-degree

( 1−n
2 ,− 1+n

2 ).

For later purposes, let us define

Cspin(g, w) : Γ(S(M)g)→ Γ
(
S(M, g)

)
sg = (ψ, φ) 7→ 1

2 /Dψ −
(
w + n

2
)
φ ,

and

CS
k

(g, w) : Γ
(
Sk+1(M)

)
→ Γ

(
Sk(M)

)
(s1, η, s2) 7→

(
n(n+ 1 + w) + (n+ w)(2w − 2)

)
s1

+ (n+ 2w) div(η)−�k
(1−n−w)s2 ,(3.4)

where s1, s2 ∈ Γ
(
Sk(M)

)
and η ∈ Γ

(
TM ⊗ Sk(M)

)
. Note that for Y ⊗ s ∈

Γ
(
TM ⊗Sk(M)

)
we used div(Y ⊗ s) := div(Y )s+∇S

k(M)
Y s ∈ Γ

(
Sk(M)

)
, and the

divergence of a vector field is defined by

div(Y ) :loc.=
∑
i

εig(∇gsiY, si) .

By the proposition below, they are the formal adjoints of corresponding tractor
D-operators.
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Proposition 3.3. Let k ∈ N0. As formal adjoints with respect to the corresponding
L2-scalar product we have that(

DS
k

(g, w)
)∗ = CS

k

(g, 1− n− w) ,(
CS

k

(g, w)
)∗ = DS

k

(g, 1− n− w) ,(
Dspin(g, w)

)∗ = −2
√

2ipCspin(g, 1
2 − n− w

)
,(

Cspin(g, w)
)∗ = − 1

2
√

2
ipDspin(g, 1

2 − n− w
)
.

Proof. Let us set w1 := (n+ 2w − 2) and w2 := (w + n−1
2 ). Using the formulas

(2.8) and (2.9) for the scalar products gT and gS we compute, for k = 0, that

gT ⊗S

DS0
(g, w)s,

s1
η
s2


L2

= −gS(�k
ws, s2)L2 + gTM⊗S

(
w1(∇Ss)\, η

)
L2 + gS(ww1s, s1)L2

= −gS(s,�k
ws2)L2 − gS (s, w1 div(η))L2 + gS(s, ww1s1)L2

= gS

s, CS0
(g, 1− n− w)

s1
η
s2


L2

,

where we have used the self-adjointness of ∆S
k(M)

g and the gS -metricity of ∇S . Note
that the index ·L2 indicates the induced L2-scalar product. The second assertion,
for k = 0, follows immediately. The case for k > 0 runs along the same lines.
Coming to the third one, we have that

gS
(
Dspin(g, w)ψ,

(
φ1
φ2

))
L2

= −2
√

2ip
(
〈 12 /Dψ, φ1〉L2 + (−1)p〈w2ψ, φ2〉L2

)
= −2

√
2ip
(
(−1)p〈ψ, 1

2 /Dφ1〉L2 + (−1)p〈ψ,w2φ2〉L2
)

= −2
√

2ip(−1)p
(
〈ψ, 1

2 /Dφ1 −
( 1

2 − n− w + n
2
)
φ2〉L2

)
=
〈
ψ, (−2)

√
2ipCspin (g, 1

2 − n− w
)(φ1

φ2

)〉
L2
,

where we have used the (anti-) self-adjointness of /D. Also note the hermiticity of
〈·, ·〉L2 . The fourth equation follows immediately from the third, which completes
the proof. �

It follows from the last proposition and from the invariance of the corresponding
scalar products with respect to g and ĝ = e2σg, that:
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Proposition 3.4. For ĝ = e2σg, sg ∈ Γ(S(M)g) and (s1, η, s2) ∈ Γ
(
Sk+1(M)

)
,

one has that

CS
k

(ĝ, w)
(
ewσT (g, σ)(s1, η, s2)

)
=e(w−1)σCS

k

(g, w)(s1, η, s2),

Cspin(ĝ, w)(ewσs
ĝ
) =e(w− 1

2 )σ ̂Cspin(g, w)sg .

As mentioned in Corollary 3.2, the operator �k
2−n

2
on Γ

(
Sk(M)

)
, for k ∈ N0, is

conformally covariant. Hence we can use the curved translation principle to define
P
S(M)
2N (g) : Γ(S(M)g)→ Γ(S(M)g), for N ∈ N, by

P
S(M)
2 (g) :=�0

2−n
2

= ∆S(M)
g + 2−n

2 J

P
S(M)
2N (g) :=CS

0
(
g,− 2(N−1)+n

2

)
◦ · · · ◦ CS

N−2 (
g,− 2+n

2
)
◦�N−1

2−n
2
◦

◦DS
N−2 (

g, 4−n
2
)
◦ · · · ◦DS

0 (
g, 2N−n

2
)
, N > 1 .(3.5)

These operators satisfy the following:

Proposition 3.5. The operator PS(M)
2N (g), for N ∈ N, is conformally covariant

of bi-degree ( 2N−n
2 ,− 2N+n

2 ), i.e., for ĝ = e2σg we have

P
S(M)
2N (ĝ)(e

2N−n
2 σs

ĝ
) = e−

2N+n
2 σP

S(M)
2N (g)sg ,

for s ∈ Γ
(
S(M)

)
. Its leading term is given by c(n,N)(∆S(M)

g )N for a constant
c(n,N) := (−1)N−1∏N−1

k=1 [k(2 + 2k − n)].

Proof. The conformal covariance follows from the well-chosen w′s in the composi-
tion. Furthermore it follows from the composition that PS(M)

2N (g) has leading part
c(n,N)(∆S(M)

g )N , where the expression of c(n,N) follows directly from (3.3) and
(3.4). �

Remark 3.6. In case of even n, the operator P
S(M)
2N (g), for N ≥ n

2 , is not
identically zero as stated in [10, Proposition 5.26]. It is just of order less than 2N ,
due to the fact that the constant c(n,N) is zero.

Example 3.7. A straightforward computation yields explicit formulas for

P
S(M)
2 (g) = ∆S(M)

g + 2−n
2 J =

(
− /D2 2 /D

1
2 (P,∇g,S) + 1

2 (∇g,S , P ·) − /D2

)
,

and

P
S(M)
4 (g) = CS

0 (
g,− 2+n

2
)
◦ (∆S

1(M)
g + 2−n

2 J) ◦DS
0 (
g, 4−n

2
)

=
(

(n− 4)A(g) /D +W ·W · −4(n− 4)A(g)
B(g) (n− 4) /DA(g) +W ·W ·

)
,
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where
A(g) := /D

3 − (P,∇g,S)− (∇g,S , P ·) ,

B(g) :=(n− 4)
[
A(g) /D2 + /D

2
A(g)− 2 /D2 + 2

(
(P 2,∇g,S) + (∇g,S , P 2)

)]
− (n− 4)(C,P ) + 2(B,∇g,S) + C ·W ·+W · C · .

We can decompose PS(M)
4 (g) = P red

4 (g) +R4(g), where

R4(g) :=
(

W ·W · 0
C ·W ·+W · C· W ·W ·

)
is conformally covariant of bi-degree ( 4−n

2 ,− 4+n
2 ). Actually, R4(g) is up to a

multiple the square of the curvature associated to spin tractor covariant derivative
∇S , hence conformally covariant. It then immediately follows that P red

4 (g) satisfies
the same conformal transformation law as PS(M)

4 (g).

4. The construction of conformal powers of the Dirac operator
and related structures

In this section we construct conformal odd powers of the Dirac operator by com-
position of the operators PS(M)

2N (g), cf. Definition (3.5), with the tractor D-operator
Dspin(g, w) and its formal adjoint Cspin(g, w). Furthermore, we present explicit for-
mulas for lower order examples in general, and subsequently simplify in the Einstein
case. We then go on to prove some formal (anti-) self-adjointness results. Based
on explicit formulas we show that they are polynomials in first order differential
operators.

For N ∈ N we define the differential operator

D2N+1(g) := Cspin (g,− 2N+n
2
)
◦ PS(M)

2N (g) ◦Dspin (g, 2N+1−n
2

)
(4.1)
acting on the spinor bundle.

Theorem 4.1. Let N ∈ N. The operator D2N+1(g) is conformally covariant of
bi-degree ( 2N+1−n

2 ,− 2N+1+n
2 ), i.e., for ĝ = e2σg and ψ ∈ Γ

(
S(M, g)

)
we have

D2N+1(ĝ)(e
2N+1−n

2 σψ̂) = e−
2N+1+n

2 σ ̂D2N+1(g)ψ .

Its leading term is given by (−1)N N
2 c(n,N) /D2N+1.

Proof. The conformal covariance follows directly from the construction ofD2N+1(g).
P
S(M)
2N (g) has leading term c(n,N)(∆S(M)

g )N and it holds that

(∆S(M)
g )N =

(
(−1)N /D

2N + LOT (−1)N−12N /D
2N−1 + LOT

LOT (−1)N /D
2N + LOT

)
,

where LOT means lower order terms. Then it follows that

D2N+1(g) = c(n,N)
( 1

2 /D N
)

(∆S(M)
g )N

(
N
1
2 /D

)
+ LOT

= (−1)N N
2 c(n,N) /D2N+1 + LOT ,
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which completes the proof. �

Remark 4.2. In case of even n, the operator D2N+1(g), for N ≥ n
2 , is not

identically zero as stated in [10, Theorem 5.27]. It is just of order less than 2N + 1,
due to the fact that the constant in front of /D2N+1 is zero. Thus the last theorem
does not yield conformal powers of the Dirac operator.

Theorem 4.3. Let (M, g) be a Spin-manifold. A conformal third power of the
Dirac operator is given by

D3(g) = − 1
2 [ /D3 − (P,∇g,S)− (∇g,S , P ·)],

whereas for n 6= 4 a fifth power is given by

D5(g) = (n− 4)
[
/DD3(g) /D + 2

(
/D

2
D3(g) +D3(g) /D2

)
− 4 /D5

+ 4
(

2P 2 + 1
n−4B,∇

g,S
)

+ 4
(
∇g,S , 2P 2 ·+ 1

n−4B·
)

− 2(C,P ·)− 2(P,C·)
]

+ /D(W ·W ·) +W ·W · /D + 4(C ·W ·+W · C·),

where the bracket and product notations were introduced in Section 2.

Proof. It based on a straightforward computation using explicit formulas for
Dspin(g, w), Cspin(g, w) and Example 3.7. �

Remark 4.4. We define a conformally covariant differential operator Lk(g) :
Γ(S(M)g)→ Γ(S(M)g), for k ∈ N, of bi-degree (k+1−n

2 ,−k+1+n
2 ) by

Lk(g) := 4
k+1D

spin (g,−k+n
2
)
◦Dk(g) ◦ Cspin (g, k+1−n

2
)
,(4.2)

where Dk(g) : Γ
(
S(M, g)

)
→ Γ

(
S(M, g)

)
is some conformally covariant operator

of bi-degree (k−n2 ,−k+n
2 ). The case D1(g) = /D was found in a joint work with

Andreas Juhl, also cf. [24]. Assuming D1(g) = /D and D3(g) is our conformal third
powers of the Dirac operator, gives

L1(g) =
(
− /D2 2 /D
1
2 /D

3 − /D2

)
, L3(g) =

(
−D3(g) /D 4D3(g)

1
4 /DD3(g) /D − /DD3(g)

)
.

Note that the pairs
(
P
S(M)
2 (g), L1(g)

)
and

(
P
S(M)
4 (g), L3(g)

)
have same bi-degrees,

cf. Theorem 3.5. However, more interesting is their weighted sum:

L1(g)− PS(M)
2 (g) =

(
0 0

D3(g) 0

)
,

L3(g) + 1
n−4P

S(M)
4 (g) =

( 1
n−4W ·W · 0
D5(g) 1

n−4W ·W ·

)
.

The decomposition P
S(M)
4 (g) = P red

4 (g) + R4(g), cf. Example 3.7, induces a
decomposition D5(g) = Dred

5 (g) + Rspin
5 (g) into conformally covariant operators,
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where

Rspin
5 (g) : = Cspin (g,− 4+n

2
)
◦R4(g) ◦Dspin (g, 5−n

2
)

= /D(W ·W ·) +W ·W · /D + 4(C ·W ·+W · C·) .

Question: Is it possible to describe such a decomposition forD2N+1(g) or equivalently
for PS(M)

2N (g) by use of the operators L2N−1(g), cf. Remark 4.4, for appropriate
D2N−1(g)?

Let us denote the first three examples of conformal powers of the Dirac operator
as follows:

(4.3) D1 := /D ; D3 := −2D3(g) ; D5 := 1
n−4D

red
5 (g) , (n 6= 4) .

These operators have an odd power of the Dirac operator as the leading term. Due
to the explicit formulas, cf. Theorem 4.3, we can prove the following theorem.

Theorem 4.5. Let (M, g) be a n-dimensional Einstein Spin-manifold, normalized
by Ric = 2(n−1)J

n . Then one has

D3 =
(
/D −

√
2J
n

)
/D
(
/D +

√
2J
n

)
,

D5 =
(
/D −

√
8J
n

)(
/D −

√
2J
n

)
/D
(
/D +

√
2J
n

)(
/D +

√
8J
n

)
.

Proof. Since (M, g) is Einstein with normalization Ric = 2(n−1)J
n g for J ∈ R, it

follows that P = J
ng. This shows, that

D3 = /D
3 − 2(P,∇g,S) = /D

3 − 2J
n
/D

=
(
/D −

√
2J
n

)
/D
(
/D +

√
2J
n

)
.

Since Bach- and Cotton tensor vanish for Einstein metrics, we have

D5 = /DD3 /D + 2
(
/D

2D3 +D3 /D
2)− 4 /D5 + 16(P 2,∇g,S)

= /D
5 − 5 2J

n
/D

3 + 4
( 2J
n

)2
/D

=
(
/D −

√
8J
n

)(
/D −

√
2J
n

)
/D
(
/D +

√
2J
n

)(
/D +

√
8J
n

)
,

which completes the proof. �

Remark 4.6. The last theorem does not hold for the operator D5(g), since there
exist examples of Einstein manifolds which are not conformally flat. Such an
example is given by the Fubini-Study metric on CP 2.

Consider the standard sphere with round metric. In this case we have J = n
2

and Theorem 4.5 agrees with the result obtained in [6], where it was proven that
all conformal odd powers of the Dirac operator, constructed using the ambient
metric, have such a product structure.

In order to prove some formal (anti-) self-adjointness results, we present the
following proposition. It generalizes the formal (anti-) self-adjointness of the Dirac
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operator, which is given in terms of the bracket notation (2.1), (2.2) by
/D = 1

2
(
(g,∇g,S) + (∇g,S , g·)

)
,

to arbitrary symmetric (0, 2)-tensor fields T instead of g.

Proposition 4.7. Let (M, g) be a Spin-manifold without boundary, and let T be
a symmetric (0, 2)-tensor field. The operator

(T,∇g,S) + (∇g,S , T ·) : Γ
(
S(M, g)

)
→ Γ

(
S(M, g)

)
is formally (anti-) self-adjoint with respect to the induced L2-scalar product.

Proof. Let ψ, φ ∈ Γc
(
S(M, g)

)
be the compactly supported spinors, and define

a 1-form w(X) := 〈T (X)\ · ψ, φ〉 with values in C. Considering its dual Yw, with
respect to g, and taking its divergence we obtain

div(Yw) =
∑
i

εi
[
〈T (si)\ · ∇g,Ssi ψ, φ〉 − (−1)p〈ψ, T (si)\ · ∇g,Ssi φ〉

]
+ (−1)p〈ψ, (δ∇

g

T )\ · φ〉 ,

where δ∇g is the co-differential of d∇g with respect to the L2-scalar product induced
by the metric g. Using Stokes’ Theorem we get

∫
M

div(Yw)V ol(g) = 0, hence

〈(T,∇g,Sψ) + (∇g,S , T · ψ), φ〉L2

=
∫
M

〈(T,∇g,Sψ) + (∇g,S , T · ψ), φ〉Vol(g)

= (−1)p
∫
M

〈ψ, 2(T,∇g,Sφ〉 − (δ∇
g

T )\ · φ〉Vol(g)

= (−1)p〈ψ, (T,∇g,Sφ) + (∇g,S , T · φ)〉L2 ,

which completes the proof. �

This leads us to the following result:

Corollary 4.8. Let (M, g) be a Spin-manifold without boundary. The operators
Dk, k = 1, 3, 5, are formally (anti-) self-adjoint with respect to the induced L2-scalar
product, i.e.,

〈Dkψ, φ〉L2 = (−1)p〈ψ,Dkφ〉L2

for ψ, φ compactly supported sections of the spinor bundle.

Proof. This follows from Theorem 4.3, Proposition 4.7 and the fact that we have

〈(C,P ·)ψ + (P,C·)ψ, φ〉 =
∑
i

εi〈C(si) · P (si) · ψ + P (si) · C(si) · ψ, φ〉

= (−1)p
∑
i

εi〈ψ, P (si) · C(si) · φ+ C(si) · P (si) · φ〉

= (−1)p〈ψ, (C,P ·)φ+ (P,C·)φ〉 ,

for any ψ, φ ∈ Γ
(
S(M, g)

)
, where {si} is a g-orthonormal basis. �

This corollary (except the case k = 1, which is well known) is a special case of
the following result:
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Theorem 4.9. Let (M, g) be a Spin-manifold without boundary. For N ∈ N
the operator D2N+1(g) is formally (anti-) self-adjoint with respect to the induced
L2-scalar product, i.e.,

〈D2N+1(g)ψ, φ〉L2 = (−1)p〈ψ,D2N+1(g)φ〉L2

for ψ, φ compactly supported sections of the spinor bundle.

Proof. First of all note that from Proposition 3.3 the operator PS(M)
2N (g) is formally

self-adjoint. Hence, by further use of Proposition 3.3, we get that

〈D2N+1(g)ψ, φ〉L2 = 〈Cspin (g,− 2N+n
2
)
◦ PS(M)

2N (g) ◦Dspin (g, 2N+1−n
2

)
ψ, φ〉L2

= 〈ψ, ipipCspin (g,− 2N+n
2
)
◦ PS(M)

2N (g) ◦Dspin (g, 2N+1−n
2

)
φ〉L2

= 〈ψ, (−1)pD2N+1(g)φ〉L2 ,

which completes the proof. �

Now we are going to describe lower order conformal powers of the Dirac operator
as polynomials in first order differential operators. From explicit formulas for Dk,
for k = 1, 3, 5, we can define differential operators Mk, for k = 1, 3, 5, by

M1 : = D1 − 0
= 1

2
(
(g,∇g,S) + (∇g,S , g·)

)
,

M3 : = D3 −D3
1

= −
(
(P,∇g,S) + (∇g,S , P ·)

)
,

M5 : = D5 −D1D3D1 − 2(D2
1D3 +D3D2

1) + 4D5
1

= 4
(

(2P 2 + 1
n−4B,∇

g,S) + (∇g,S , 2P 2 ·+ 1
n−4B·)

)
− 2
(
(C,P ·) + (P,C·)

)
.

By definition they are first order operators. Just as for each Dk, the Mk, for
k = 1, 3, 5, are formally (anti-) self-adjoint with respect to the induced L2-scalar
product. More interesting, however, is the following result:

Theorem 4.10. On a Spin-manifold (M, g) of dimension n 6= 4 we have
D1 =M1 ,

D3 =M3
1 +M3 ,

D5 =M5
1 +M1M3M1 + 2(M2

1M3 +M3M
2
1 ) +M5 .

Proof. The proof based on explicit formulas, see Theorem 4.3, and the definition
of Mk, k = 1, 3, 5, given above. �

Remark 4.11. Concerning the structure of GJMS operator Andreas Juhl found
an inversion formula, see [21, Theorem 1.1], which states that all GJMS operators
are polynomials in second order differential operator and vice versa. It is also
remarkable, that these second order operators are the coefficients of a holographic
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deformation of the Yamabe operator (in terms of the Poincaré-Einstein metric).
We believe, see Theorem 4.10, that there is a complete analogous picture for the
conformal powers of the Dirac operator, i.e., for all N ∈ N0 (N ≤ n for even n)
there exists a sequence {M1, . . . ,M2N+1} of formally (anti-) self-adjoint first order
differential operator such that

D2N+1 ∈ N[M1, . . . ,M2N+1] ,

M2N+1 ∈ Z[D1, . . . ,D2N+1] .
Hence, it is natural to ask about the nature of M2N+1. For example, is there a
generating function for the series of M2N+1, and how can one understand the
coefficients arising in the polynomial description of D2N+1?
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