Previous |  Up |  Next

Article

Keywords:
generalized half-linear differential equation; de la Vallée Poussin inequality; half-linear Euler differential equation; Dirichlet eigenvalue problem
Summary:
We study the generalized half-linear second order differential equation via the associated Riccati type differential equation and Prüfer transformation. We establish a de la Vallée Poussin type inequality for the distance of consecutive zeros of a nontrivial solution and this result we apply to the “classical” half-linear differential equation regarded as a perturbation of the half-linear Euler differential equation with the so-called critical oscillation constant. In the second part of the paper we study a Dirichlet eigenvalue problem associated with the investigated half-linear equation.
References:
[1] Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers,Dordrecht-Boston-London, 2002. MR 2091751
[2] Andres, J.: On the criterion of de la Vallée Poussin. Publ. Math. Debrecen 45 (1994), 145–152. MR 1291810
[3] Bihari, I.: On the second order half-linear differential equation. Studia Sci. Math. Hungar. 3 (1968), 411–437. MR 0267190 | Zbl 0167.37403
[4] Bihari, I.: Notes on eigenvalues and zeros of the solutions of half-linear second order ordinary differential equation. Period. Math. Hungar. (1976), 117–125. DOI 10.1007/BF02082686 | MR 0437847
[5] Bognár, G., Došlý, O.: Conditional oscillation and principal solution of generalized half-linear differential equation. Publ. Math. Debrecen 82 (2013), 451–459. DOI 10.5486/PMD.2013.5374 | MR 3034358 | Zbl 1299.34122
[6] Cohn, J.H.E.: On an oscillation criterion of de la Vallée Poussin. Quart. J. Math. Oxford Ser. (2) 39 (159) (1988), 173–174. DOI 10.1093/qmath/39.2.173 | MR 0947498 | Zbl 0668.34036
[7] de Vallée Poussin, Ch.: Sur l’équation différentielle linéqire du second order. Détermination d’une intégrale par deux valuers assignés. Extension aux équasions d’ordre $n$. J. Math. Pures Appl. (8) (1929), 125–144.
[8] Došlý, O., Fišnarová, S.: Half-linear oscillation criteria: perturbation in term involving derivative. Nonlinear Anal. 73 (2010), 3756–3766. DOI 10.1016/j.na.2010.07.049 | MR 2728552 | Zbl 1207.34041
[9] Došlý, O., Funková, H.: Perturbations of half-linear Euler differential equation and transformations of modified Riccati equation. Abstr. Appl. Anal. 2012 (2012), 19pp. MR 2991019 | Zbl 1296.34081
[10] Došlý, O., Lomtatidze, A.: Disconjugacy and disfocality criteria for singular half-linearsecond order differential equations. Ann. Polon. Math. 72 (1999), 273–284. MR 1738580
[11] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. MR 2158903
[12] Došlý, O., Řezníčková, J.: Conjugacy and principal solution of generalized half-linear second order differential equations. Electron. J. Qual. Theory Differ. Equ., Proc.9th Coll. QTDE 2012 (5) (2012), 1–13. MR 3338524
[13] Došlý, O., Ünal, M.: Conditionally oscillatory half-linear differential equations. Acta Math. Hungar. 120 (2008), 147–163. DOI 10.1007/s10474-007-7120-4 | MR 2431365
[14] Došlý, O., Yamaoka, N.: Oscillation constants for second-order ordinary differential equations related to elliptic equations with $p$-Laplacian. Nonlinear Anal. 113 (2015), 115–136. MR 3281849
[15] Elber, Á., Kusano, T.: On differential equation $y^{\prime \prime }+p(t)\vert y^{\prime }\vert \,{\rm sgn}\, y+q(t)y=0$. Hiroshima Math. J. 22 (1992), 203–218. MR 1160048
[16] Elbert, Á.: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 153–180. MR 0680591
[17] Elbert, Á.: Generalized Riccati equation for half-linear second order differentia lequations. Colloq. Math. Soc. János Bolyai 47 (1984), 227–249. MR 0890544
[18] Elbert, Á., Schneider, A.: Perturbations of the half-linear Euler differential equation. Result. Math. 37 (2000), 56–83. DOI 10.1007/BF03322512 | MR 1742294 | Zbl 0958.34029
[19] Fišnarová, S., Mařík, R.: Half-linear ODE and modified Riccati equation: comparison theorems, integral characterization of principal solution. Nonlinear Anal. 74 (2011), 6427–6433. DOI 10.1016/j.na.2011.06.025 | MR 2833426 | Zbl 1229.34048
[20] Fišnarová, S., Mařík, R.: Local estimates for modified Riccati equation in theory of half-linear differential equation. Electron. J. Qual. Theory Differ. Equ. 2012 (63) (2012), 15 pp. MR 2966805
[21] Harris, B.J.: On the oscillation criterion of Cohn. Quart. J. Math. Oxford Ser. (2) 42 (167) (1988), 309–9313. MR 1120991
[22] Hartman, P., Wintner, A.: On an oscillation criterion of De la Vallée Poussin. Quart. Appl. Math. 13 (1955), 330–332. MR 0073773 | Zbl 0066.06404
[23] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions. Nonlinear Anal. 64 (2006), 762–787. DOI 10.1016/j.na.2005.05.045 | MR 2197094
[24] Kiguradze, I., Půža, B.: On the Vallée-Poussin problem for singular differential equations with deviating arguments. Arch. Math. (Brno) 33 (1–2) (1997), 127–138. MR 1464307 | Zbl 0914.34064
[25] Kusano, T., Manojlović, J., Tanigawa, T.: Existence of regularly varying solutions with nonzero indices of half-linear differential equations with retarded arguments. Comput. Math. Appl. 59 (2010), 411–425. DOI 10.1016/j.camwa.2009.06.039 | MR 2575528 | Zbl 1189.34121
[26] Willet, D.: Generalized de la Vallée Pousin disconjugacy test for linear differential equations. Canad. Math. Bull 14 (1971), 419–430. DOI 10.4153/CMB-1971-073-3
Partner of
EuDML logo