[1] Agarwal, R.P., Grace, S.R., O’Regan, D.:
Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers,Dordrecht-Boston-London, 2002.
MR 2091751
[2] Andres, J.:
On the criterion of de la Vallée Poussin. Publ. Math. Debrecen 45 (1994), 145–152.
MR 1291810
[3] Bihari, I.:
On the second order half-linear differential equation. Studia Sci. Math. Hungar. 3 (1968), 411–437.
MR 0267190 |
Zbl 0167.37403
[4] Bihari, I.:
Notes on eigenvalues and zeros of the solutions of half-linear second order ordinary differential equation. Period. Math. Hungar. (1976), 117–125.
DOI 10.1007/BF02082686 |
MR 0437847
[7] de Vallée Poussin, Ch.: Sur l’équation différentielle linéqire du second order. Détermination d’une intégrale par deux valuers assignés. Extension aux équasions d’ordre $n$. J. Math. Pures Appl. (8) (1929), 125–144.
[9] Došlý, O., Funková, H.:
Perturbations of half-linear Euler differential equation and transformations of modified Riccati equation. Abstr. Appl. Anal. 2012 (2012), 19pp.
MR 2991019 |
Zbl 1296.34081
[10] Došlý, O., Lomtatidze, A.:
Disconjugacy and disfocality criteria for singular half-linearsecond order differential equations. Ann. Polon. Math. 72 (1999), 273–284.
MR 1738580
[11] Došlý, O., Řehák, P.:
Half-Linear Differential Equations. North Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005.
MR 2158903
[12] Došlý, O., Řezníčková, J.:
Conjugacy and principal solution of generalized half-linear second order differential equations. Electron. J. Qual. Theory Differ. Equ., Proc.9th Coll. QTDE 2012 (5) (2012), 1–13.
MR 3338524
[14] Došlý, O., Yamaoka, N.:
Oscillation constants for second-order ordinary differential equations related to elliptic equations with $p$-Laplacian. Nonlinear Anal. 113 (2015), 115–136.
MR 3281849
[15] Elber, Á., Kusano, T.:
On differential equation $y^{\prime \prime }+p(t)\vert y^{\prime }\vert \,{\rm sgn}\, y+q(t)y=0$. Hiroshima Math. J. 22 (1992), 203–218.
MR 1160048
[16] Elbert, Á.:
A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 153–180.
MR 0680591
[17] Elbert, Á.:
Generalized Riccati equation for half-linear second order differentia lequations. Colloq. Math. Soc. János Bolyai 47 (1984), 227–249.
MR 0890544
[20] Fišnarová, S., Mařík, R.:
Local estimates for modified Riccati equation in theory of half-linear differential equation. Electron. J. Qual. Theory Differ. Equ. 2012 (63) (2012), 15 pp.
MR 2966805
[21] Harris, B.J.:
On the oscillation criterion of Cohn. Quart. J. Math. Oxford Ser. (2) 42 (167) (1988), 309–9313.
MR 1120991
[22] Hartman, P., Wintner, A.:
On an oscillation criterion of De la Vallée Poussin. Quart. Appl. Math. 13 (1955), 330–332.
MR 0073773 |
Zbl 0066.06404
[23] Jaroš, J., Kusano, T., Tanigawa, T.:
Nonoscillatory half-linear differential equations and generalized Karamata functions. Nonlinear Anal. 64 (2006), 762–787.
DOI 10.1016/j.na.2005.05.045 |
MR 2197094
[24] Kiguradze, I., Půža, B.:
On the Vallée-Poussin problem for singular differential equations with deviating arguments. Arch. Math. (Brno) 33 (1–2) (1997), 127–138.
MR 1464307 |
Zbl 0914.34064
[26] Willet, D.:
Generalized de la Vallée Pousin disconjugacy test for linear differential equations. Canad. Math. Bull 14 (1971), 419–430.
DOI 10.4153/CMB-1971-073-3