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DE LA VALLÉE POUSSIN TYPE INEQUALITY

AND EIGENVALUE PROBLEM FOR GENERALIZED

HALF-LINEAR DIFFERENTIAL EQUATION

Libor Báňa and Ondřej Došlý

Abstract. We study the generalized half-linear second order differential
equation via the associated Riccati type differential equation and Prüfer
transformation. We establish a de la Vallée Poussin type inequality for the
distance of consecutive zeros of a nontrivial solution and this result we apply
to the “classical” half-linear differential equation regarded as a perturbation of
the half-linear Euler differential equation with the so-called critical oscillation
constant. In the second part of the paper we study a Dirichlet eigenvalue
problem associated with the investigated half-linear equation.

1. Introduction

In this paper we deal with the so-called generalized half-linear differential equation

(1) x′′ + c(t)f(x, x′) = 0 ,

where c is a continuous function and the function f satisfies the following assump-
tions introduced in [3, 4].

(i) The function f is continuous on Ω = R× R0, where R0 = R \ {0};
(ii) It holds xf(x, y) > 0 if xy 6= 0;
(iii) The function f is homogeneous, i.e., f(λx, λy) = λf(x, y) for λ ∈ R and

(x, y) ∈ Ω;
(iv) The function f is sufficiently smooth such that the solutions of (1) depend

continuously and uniquely on the initial condition x(t1) = x0, x′(t1) = x1 for
(x0, x1) ∈ Ω;

(v) Let F (t) := tf(t, 1), then∫ ∞
−∞

dt

1 + F (t) <∞ and lim
|t|→∞

F (t) =∞ .
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A typical model of (1) is the “classical” half-linear differential equation

(2)
(
Φ(x′)

)′ + c(t)Φ(x) = 0 , Φ(x) := |x|p−2x , p > 1 ,

which attracted considerable attention in the recent years, see [1, 11], and its
investigation was initiated by the fundamental Elbert’s paper [16] from 1979.
Differentiating the first term in (2) we obtain

(
Φ(x′)

)′ = (p−1)|x′|p−2x′′ and hence
(2) can be written as

x′′ + c(t)
p− 1Φ(x)|x′|2−p = 0

which is an equation of the form (1) (with f(x, x′) = 1
p−1 Φ(x)|x′|2−p and F (t) =

|t|p). Generalized half-linear equation and also equation (2) are sometimes conside-
red in a more general form

(3)
(
a(t)x′

)′ + c(t)f(x, a(t)x′) = 0 ,

resp.

(4)
(
a(t)Φ(x′)

)′ + c(t)Φ(x) = 0

with a positive continuous function a. However, the change of independent variable
s =

∫ t
a−1(τ) dτ resp.

∫ t
a1−q(τ) dτ , 1

p + 1
q = 1, converts (3) and (4) into an

equation of the form (1) or (2), respectively. The terminology “half-linear” equation
is justified by the fact that the solution space of (1) is homogeneous but not
generally additive, i.e., it possesses just one half of the properties characterizing
linearity.

A standard subject of the present investigation is what results of the deeply
developed qualitative theory of the linear second order Sturm-Liouville differential
equation

(5)
(
a(t)x′

)′ + c(t)x = 0

(which is the special case p = 2 in (4)) can be “half-linearized”, i.e., extended to
(2). From this point of view, it is also natural to look which results known for
(classical) half-linear equation (2) can be extended to its more general form (1) or
(3), see also [5, 12].

The “restored” interest in the investigation of generalized half-linear differential
equations is motivated by the fact that the recently introduced so-called modified
Riccati differential equation associated with (2), as appeared e.g. in [13, 14, 18, 23],
is the special form of the Riccati type differential equation associated with (1),
see the later given equation (10) and also equation (28) from Section 4. Modified
Riccati equation turned out to be a very useful tool in the oscillation theory of (4)
since it essentially substitutes the missing transformation theory for (4), see [9, 25]
and also [11, Sec. 1.3].
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2. Preliminaries

The classical de la Vallée Pousin inequality, as established in [7], concerns of the
second order linear differential equation
(6) x′′ + b(t)x′ + c(t)x = 0
with continuous functions b, c and it claims that if t1 < t2 are consecutive zeros of
a nontrivial solution of (6), h := t2 − t1, then 1 < Bh+ 1

2Ch
2, where

B = max
t∈[t1,t2]

|b(t)| , C = max
t∈[t1,t2]

|c(t)| .

This condition for the distance of consecutive zeros of (6) was improved in
several subsequent papers [6, 10, 15, 21, 22, 24, 26], see also the survey paper [2].
Our presentation follows the line of [6], where it was proved that the distance of
consecutive zeros satisfies

(7) 2
∫ ∞

0

dt

1 +Bt+ Ct2
≤ t2 − t1 .

The proof of our extension of (7) to (1) is based on the relationship between (1)
and the associated Riccati type differential equation which we present in the next
part of this section which is taken from [17]. Let g be the differentiable function
given by the formula

(8) g(u) =


∫∞

1/u
ds

F (s) if u > 0 ,

−
∫ 1/u
−∞

ds

F (s) if u < 0

with the function F from the assumption (v) of Section 1, and g(0) = 0. Then g is
increasing and
(9) lim

u→±∞
g(u) = ±∞ .

If x is a solution of (1) such that x(t) 6= 0, then the function v = g(x′/x) solves
the Riccati type differential equation
(10) v′ + c(t) +H(v) = 0 ,
where the function H is given by the formula
(11) H(v) = [g−1(v)]2g′

(
g−1(v)

)
with H(0) = 0 (g−1 being the inverse function of g). Moreover, the function H
satisfies

(12)
∫ −ε
−∞

dv

H(v) <∞ ,

∫ ∞
ε

dv

H(v) <∞

for some (and hence for every) ε > 0. Note that in case of the classical half-linear
differential equation (2) we have g(u) = Φ(u) and H(v) = (p− 1)|v|q, where q is
the conjugate exponent of p, i.e., 1

p + 1
q = 1.

The existence of a Riccati type differential equation associated with (1) implies
that the classical linear Sturmian theory can be extended to (1) and hence this
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equation can be classified as oscillatory or nonoscillatory similarly as in the linear
case.

Next we present the generalized Prüfer transformation which we use in studying
the Dirichlet eigenvalue problem associated with (1). Consider equation (1) with
c(t) = 1, i.e., the equation x′′ + f(x, x′) = 0, together with the initial condition
x(0) = 0, x′(0) = 1. The solution of this initial value problem we denote by S = S(t).
Following [17], we call this function the generalized sine function and its derivative
S′(t) =: C(t) the generalized cosine function. Using these functions we introduce
the generalized Prüfer transformation as follows. Let x be a nontrivial solution of
(1) and define continuous functions ϕ, % as generalized polar coordinates
(13) x(t) = %(t)S

(
ϕ(t)

)
, x′(t) = %(t)C

(
ϕ(t)

)
.

We also define

(14) π̂ =
∫ ∞
−∞

ds

1 + F (s) ,

where the function F is defined in (v) of Introduction. Then, the function ϕ is a
solution of the equation

ϕ′ = 1 + (c(t)− 1)G(ϕ) ,
where

(15) G(ϕ) =


F (T (ϕ))

1 + F (T (ϕ)) , ϕ 6= (2k + 1) π̂2 , k ∈ Z

1 , ϕ = (2k + 1) π̂2 , k ∈ Z ,

T (ϕ) = S(ϕ)
C(ϕ) being the generalized tangent function. Together with (1) we consider

another equation of the same form
(16) y′′ + C(t)f(y, y′) = 0
with a continuous function C and with the same functions f as in (1). We suppose
that (16) is a majorant of (1), i.e., C(t) ≥ c(t) in an interval under consideration.

In the second part of the paper we use a comparison result for (1) and (16) that
the boundary value problem associated with the generalized half-linear equation
containing an eigenvalue parameter
(17) x′′ + λc(t)f(x, x′) = 0
together with the Dirichlet boundary condition
(18) x(0) = 0 = x(π̂)
possesses a sequence of eigenvalues λn →∞ with the property that the eigenfunction
xn corresponding to λn has exactly n− 1 zeros on (0, π̂). To prove this result we
need the following fact. If y is a nontrivial solution of (16) and ψ is its Prüfer angle
(defined analogically as in (13)), then by [17, Theorem 4.9] we have ψ(t) ≥ ϕ(t) if
ψ(t0) ≥ ϕ(t0) at an initial condition. Moreover, we have y(t) = 0 just if ψ(t) = kπ̂,
k ∈ Z, and ψ′(t) = 1 at these points t since S(ψ(t)) = 0 if and only if ψ (t) = 0
(mod π̂).
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3. Vallée Poussin inequality

The main result of this section reads as follows.

Theorem 1. Let t1 < t2 be consecutive zeros of a nontrivial solution of (1). Then

(19)
∫ ∞
−∞

du

C +H(u) ≤ t2 − t1 ,

where
C = max

t∈[t1,t2]
|c(t)| ,

and H is the function which appears in the generalized Riccati equation associated
with (1), i.e., it is given by (11) with the function g given by (8).

Proof. Since equation (1) is homogeneous, without loss of generality we can
suppose that x(t) > 0 for t ∈ (t1, t2). Let c, d be the first and the last points of
local maxima of x in (t1, t2), so that c, d ∈ (t1, t2), c ≤ d, x′(t) > 0 for t ∈ (t1, c),
x′(c) = 0, and x′(d) = 0, x′(t) < 0 for t ∈ (d, t2). Let v = g(x′/x) be the solution
of (10) generated by x. Then (9) implies that v(t) > 0 in (t1, c), v(t1+) =∞, and
v(c) = 0.

We have for t ∈ (t1, c)

(20) v′ = −c(t)−H(v) ≥ −C −H(v) ,

hence ∫ c

t1

v′(t)dt
C +H(v(t)) ≥ −(c− t1) .

Substituting v(t) = u, the integral takes form∫ 0

∞

du

C +H(u) ≥ t1 − c ,

which means that

(21)
∫ ∞

0

du

C +H(u) ≤ c− t1 .

Now consider the interval [d, t2). In this interval v(t) < 0, v(d) = 0, and
v(t2−) = −∞. Integrating (20) from d to t2 we get∫ t2

d

v′(t)dt
C +H(v(t)) ≥ −(t2 − d) .

Using the previous substitution the integral now is∫ −∞
0

du

C +H(u) ≥ d− t2,

i.e.,

(22)
∫ 0

−∞

du

C +H(u) ≤ t2 − d .
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The summation of (21) and (22) gives∫ ∞
−∞

du

C +H(u) ≤ t2 − d+ c− t1

and since c ≤ d, we have t2− d+ c− t1 ≤ t2− t1. This gives the required inequality
(19). �

Remark 1. (i) If t2 is the right focal point of t1, i.e., there exists a solution x of
(1) such that x′(t1) = 0, x(t2) = 0, then using the same reasoning as in the proof
of the previous theorem we obtain the inequality∫ 0

−∞

du

C + V (u) ≤ t2 − t1 .

A similar inequality is obtained also for the distance t2− t1 for a nontrivial solution
satisfying x(t1) = 0, x′(t2) = 0.

(ii) In the linear case f(x, x′) = x we have H(v) = v2, hence (19) reduces to (7)
with B = 0.

(iii) Another important and frequently investigated inequality for the distance
of consecutive zeros of various types of differential equations is the Lyapunov
inequality, which for (2) reads

t2 − t1 ≥
1
2p

∫ t2

t1

max{0, c(s)} ds .

The proof of inequalities of this form is mostly based on the relationship between
an equation and its associated energy functional which in case of (2) is (see [16])

(23) F(y : t1, t2) =
∫ t2

t1

[
|y′|p − c(t)|y|p

]
dt .

Concerning equation (1), we have not been able to find a functional which would
play for (1) a similar role as (23) for (2) yet, so Lyapunov type inequality for (1) is
missing till now. This problem is a subject of the present investigation.

4. Perturbed Euler equation

In this section we apply the method used in the previous section to the equation

(24)
(
Φ(x′)

)′ + c(t)Φ(x) = 0 , t ≥ 0 ,
regarded as a perturbation of the "critical" half-linear Euler equation

(25)
(
Φ(x′)

)′ + γp
tp

Φ(x) = 0 , γp :=
(p− 1

p

)p
,

i.e., we rewrite (24) into the form

(26)
(
Φ(x′)

)′ + γp
tp

Φ(x) +
(
c(t)− γp

tp

)
Φ(x) = 0 ,

we refer to [18] concerning the adjective “critical” in the Euler equation. Let w be
a solution of the Riccati equation associated with (24)

w′ + c(t) + (p− 1) |w|q = 0
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and put

v = tp−1w − Γp , Γp =
(p− 1

p

)p−1
.

Then

v′ = (p− 1)tp−2w + tp−1w′ = (p− 1)tp−2 v + Γp
tp−1 + tp−1[−c− (p− 1) |w|q]

= p− 1
t

v + (p− 1)
t

Γp − tp−1c− (p− 1)tp−1
∣∣∣v + Γp
tp−1

∣∣∣q
= −tp−1c+ γp

t
− γp

t
− p− 1

t
|v + Γp|q + p− 1

t
v + p− 1

t
Γp

= −tp−1
(
c− γp

tp

)
− p− 1

t

(
|v + Γp|q − v + γp

p− 1 − Γp
)
,

where
γp
p− 1 − Γp = 1

p− 1

(p− 1
p

)p
−
(p− 1

p

)p−1
=
(p− 1

p

)p−1(1
p
− 1
)

= −
(p− 1

p

)p
= −γp .

Thus we have obtained the differential equation for v

(27) v′ + tp−1
(
c(t)− γp

tp

)
+ p− 1

t
(|v + Γp|q − v − γp) = 0 .

In this equation we denote

C(t) := tp−1
(
c(t)− γp

tp

)
, H(v) := |v + Γp|q − v − γp ,

hence (27) can be written in the form

(28) v′ + C(t)
t

+ p− 1
t

H(v) = 0 .

A direct computation verifies that H(0) = 0 = H ′(0), H is strictly convex and
(12) holds, i.e., (28) is the Riccati type differential equation corresponding to a
generalized half-linear equation. We change the independent variable s = lg t in
(28) and denote by ˙ = d

ds the derivative with respect to s. Then, substituting
u(s) = v(es), we obtain the equation

(29) u̇+ d(s) + (p− 1)H(u) = 0 , d(s) := C(es) .

Now, let t1 < t2 be two consecutive zeros of a nontrivial solution x of (24). Then
for w = Φ(x′/x) we have w(t1+) = ∞, w(t2−) = −∞, from which v(t1+) = ∞,
v(t2−) = −∞ as well and from this u(s1+) = ∞, u(s2) = −∞, where s1 = lg t1
and s2 = lg t2.

Now we can apply the idea of the proof of Theorem 1 to (29) and we conclude
that ∫ ∞

−∞

du

D + (p− 1)H(u) ≤ s2 − s1 = lg t2 − lg t1 = lg t2
t1
,
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where

D = max
s∈[s1,s2]

|d(s)| = max
s∈[s1,s2]

|epsc(es)− γp| = max
t∈[t1,t2]

|tpc(t)− γp| .

The previous considerations are summarized in the next statement which is the
main result of this section.

Theorem 2. Let 0 < t1 < t2 be consecutive zeros of a nontrivial solution x of
(24). Then ∫ ∞

−∞

du

D + (p− 1)H(u) ≤ lg t2
t1
,

where

D = max
t∈[t1,t2]

|tpc(t)− γp| , γp =
(p− 1

p

)p
and

H(u) = |u+ Γp|q − u− γp , Γp =
(p− 1

p

)p−1
.

Remark 2. Following the idea introduced in [14], one can consider instead of (24)
a more general equation(

tα−1Φ(x′)
)′ + c(t)Φ(x) = 0 , α ∈ R , α 6= p .

However, the computations are similar to those given in the previous part of this
section, so for the sake of simplicity we consider the case α = 1 in Theorem 2.
Actually, even a more general equation

(30)
(
tα−1Φ(x′)

)′ + 1
tp−1−α f(x) = 0

is considered in [14] with f satisfying the sign condition xf(x) > 0, x 6= 0. It is
a subject of the present investigation under which additional assumptions on the
function f a Vallée-Poussin type inequality can be established also for (30).

5. Dirichlet eigenvalue problem

In this section we consider the eigenvalue problem
(31) x′′ + λc(t)f(x, x′) = 0 , x(0) = 0 = x(π̂) ,
where λ is a real eigenvalue parameter, c(t) > 0 for t ∈ [a, b] and π̂ is defined in
Section 2. We suppose that c is a continuous positive function for t ∈ [0, π̂]. We
will call λ an eigenvalue of (31) if this boundary value problem has a nontrivial
solution, the corresponding nontrivial solution is called the eigenfunction.

Throughout this section we suppose that

(32) F(µ) :=
∫ ∞
−∞

ds

1 + µF (s) → 0 as s→∞
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with the function F defined in (v) of Section 1. Obviously, in case of the classical
half-linear equation when F (t) = |t|p this assumption is satisfied.

Theorem 3. The eigenvalue problem (31) has infinitely many eigenvalues 0 <
λ1 < λ2 < · · · < λn < . . . , λn →∞ as n→∞. The n-th eigenfunction has exactly
n− 1 zeros on (0, π̂).

Proof. Let x(t;λ) be a nontrivial solution of (17) satisfying the initial condition
x(0;λ) = 0, x′(0;λ) = 1. Using the generalized Prüfer transformation we can
express x(t;λ) as

x(t;λ) = %(t)S
(
ϕ(t)) , x′(t;λ) = %(t)C(ϕ(t))

where we take ϕ in such a way that ϕ(0) = 0. To emphasize the dependence of ϕ
on λ we will write ϕ = ϕ(t;λ). We have

ϕ′(t;λ) = 1−G(ϕ) + λc(t)G(ϕ)

where G is given by formula (15). Since G(ϕ) = 0 for ϕ = kπ̂, k ∈ N , we have
ϕ′(t;λ) = 1 if ϕ(t;λ) = kπ̂. According to [17] the function ϕ(π̂;λ) is monotonically
increasing function function of λ. Denote c̄ = mint∈[0,π̂] c(t) and consider the
auxiliary eigenvalue problem

x′′ + λc̄f(x, x′) = 0 , x(0) = 0 = x(π̂) .

The differential equation in this eigenvalue problem is a minorant of (17), hence
for the Prüfer angle of the solution of this equation ψ(t;λ) for which ψ(0;λ) = 0
we have ψ(t;λ) ≤ ϕ(t;λ) for t ∈ [0, π̂]. Denote µ := λc̄. Then, of course, µ→∞ as
λ→∞. The number π̂ is defined as F(1) (see (14)). Since the function F depends
continuously on µ, there exists a sequence µn →∞ such that F(µn) = π̂

n . Then,
repeating the construction of the generalized sine function Sn(t) as the odd 2 π̂n
periodic solution of

(33) x′′ + µnf(x, x′) = 0 , x(0) = 0 = x
(
π̂/n

)
,

we obtain that (33) has a solution with zeros at kπ̂
n , k = 0, . . . , n, i.e., for the

Prüfer angle ψ(·, µn) of the solution of (33) we have ψ(tk, µn) = kπ̂
n for some

0 < t1 < t2 < · · · < tn−1 < π̂/n.
Now, from the previous paragraph we see that the Prüfer angle ϕ of the solution

of (1) satisfying x(0) = 0 grows faster than ψ, we have the sequence λn →∞ such
that ϕ(π̂, λn) = nπ̂ and the corresponding eigenfunction xn has exactly n− 1 zeros
on (0, π̂). �

Remark 3. We consider for simplicity the Dirichlet boundary condition in our
treatment of generalized half-linear eigenvalue problem. However, since our method
is similar to that used in the linear case, our results can be extended to general
Sturm-Liouville boundary conditions.
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