Previous |  Up |  Next

Article

Keywords:
idempotent completion; pretriangulated category; torsion pair
Summary:
A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that a torsion pair in a pretriangulated category extends uniquely to a torsion pair in the idempotent completion.
References:
[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. (2nd ed.) Graduate Texts in Mathematicis 13 Springer, New York (1992). MR 1245487 | Zbl 0765.16001
[2] Assem, I., Beligiannis, A., Marmaridis, N.: Right triangulated categories with right semiequivalences. Algebras and Modules II I. Reiten et al. CMS Conf. Proc. 24 AMS, Providence 17-37 (1998). MR 1648611
[3] Auslander, M.: Comments on the functor Ext. Topology 8 (1969), 151-166. DOI 10.1016/0040-9383(69)90006-8 | MR 0237606 | Zbl 0204.36401
[4] Balmer, P., Schlichting, M.: Idempotent completion of triangulated categories. J. Algebra 236 (2001), 819-834. DOI 10.1006/jabr.2000.8529 | MR 1813503 | Zbl 0977.18009
[5] Beligiannis, A.: Homotopy theory of modules and Gorenstein rings. Math. Scand. 89 (2001), 5-45. DOI 10.7146/math.scand.a-14329 | MR 1856980 | Zbl 1023.55009
[6] Beligiannis, A., Marmaridis, N.: Left triangulated categories arising from contravariantly finite subcategories. Commun. Algebra 22 (1994), 5021-5036. DOI 10.1080/00927879408825119 | MR 1285724 | Zbl 0811.18005
[7] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Am. Math. Soc. 188 (2007). MR 2327478 | Zbl 1124.18005
[8] Bühler, T.: Exact categories. Expo. Math. 28 (2010), 1-69. DOI 10.1016/j.exmath.2009.04.004 | MR 2606234 | Zbl 1192.18007
[9] Dickson, S. E.: A torsion theory for Abelian categories. Trans. Am. Math. Soc. 121 (1966), 223-235. DOI 10.1090/S0002-9947-1966-0191935-0 | MR 0191935 | Zbl 0138.01801
[10] Hartshorne, R.: Coherent functors. Adv. Math. 140 (1998), 44-94. DOI 10.1006/aima.1998.1762 | MR 1656482 | Zbl 0921.13010
[11] Karoubi, M.: Algèbres de Clifford et K-théorie. French Ann. Sci. Éc. Norm. Supér. (4) 1 (1968), 161-270. DOI 10.24033/asens.1163 | MR 0238927 | Zbl 0194.24101
[12] Kashiwara, M., Schapira, P.: Categories and Sheaves. Grundlehren der Mathematischen Wissenschaften 332 Springer, Berlin (2006). MR 2182076 | Zbl 1118.18001
[13] Koenig, S., Zhu, B.: From triangulated categories to abelian categories: cluster tilting in a general framework. Math. Z. 258 (2008), 143-160. DOI 10.1007/s00209-007-0165-9 | MR 2350040 | Zbl 1133.18005
[14] Miličić, D.: Lecture on Derived Categories. www.math.utah.edu/ {milicic/Eprints/dercat.pdf}.
[15] Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. French Astérisque 239 Société Mathématique de France, Paris (1996). MR 1453167 | Zbl 0882.18010
Partner of
EuDML logo